El
hidrógeno suele considerarse un importante vector energético en un
futuro mundo descarbonizado. Actualmente, la mayor parte del hidrógeno
se produce mediante el reformado al vapor del metano del gas natural
("hidrógeno gris"), con altas emisiones de dióxido de carbono. Cada vez
son más los que proponen utilizar la captura y el almacenamiento de
carbono para reducir estas emisiones, produciendo el llamado "hidrógeno
azul", frecuentemente promocionado como de bajas emisiones. En un
artículo revisado por expertos, se examina por primera vez el ciclo de
vida de las emisiones de gases de efecto invernadero del hidrógeno azul,
teniendo en cuenta las emisiones de dióxido de carbono y de metano
fugitivo no quemado. Lejos de ser bajas en carbono, las emisiones de
gases de efecto invernadero derivadas de la producción de hidrógeno azul
son bastante elevadas, especialmente debido a la liberación de metano
fugitivo. Para nuestros supuestos por defecto (tasa de emisión de metano
del gas natural del 3,5% y un potencial de calentamiento global de 20
años), las emisiones totales de dióxido de carbono equivalente para el
hidrógeno azul son sólo un 9%-12% menos que para el hidrógeno gris.
Mientras que las emisiones de dióxido de carbono son menores, las
emisiones fugitivas de metano del hidrógeno azul son mayores que las del
hidrógeno gris debido al mayor uso de gas natural para alimentar la
captura de carbono. Quizás sea sorprendente que la huella de gases de
efecto invernadero del hidrógeno azul sea más de un 20% mayor que la
quema de gas natural o carbón para calefacción y alrededor de un 60%
mayor que la quema de gasóleo para calefacción, de nuevo con nuestras
hipótesis por defecto. En un análisis de sensibilidad en el que la tasa
de emisión de metano del gas natural se reduce a un valor bajo de 1,54%,
las emisiones de gases de efecto invernadero del hidrógeno azul siguen
siendo mayores que las de la simple combustión de gas natural, y sólo
son un 18%-25% menores que las del hidrógeno gris. Nuestro análisis
supone que el dióxido de carbono capturado puede almacenarse
indefinidamente, una hipótesis optimista y no probada. Sin embargo,
incluso si fuera cierto, el uso del hidrógeno azul parece difícil de
justificar por motivos climático
How green is blue hydrogen?
Funding information:
Funding was provided by the Park Foundation and by Cornell University
https://onlinelibrary.wiley.com/doi/full/10.1002/ese3.956
1 INTRODUCTION
Hydrogen is widely viewed as an important fuel for a future energy transition. Currently, hydrogen is used mostly by industry during oil-refining and synthetic nitrogen fertilizer production, and little is used for energy because it is expensive relative to fossil fuels.1 However, hydrogen is increasingly being promoted as a way to address climate change, as indicated by a recent article in the New York Times.2 In this view, hydrogen is to be used not only for hard to decarbonize sectors of the economy such as long-distance transportation by trucks and airplanes but also for heating and cooking, with hydrogen blended with natural gas and distributed to homes and business through existing pipeline systems.2 Utilities are also exploring the use of hydrogen, again blended with natural gas, to power existing electric generating facilities.3 In Europe, a recent report from Gas for Climate, an association of natural gas pipeline companies, envisions large scale use of hydrogen in the future for heating and electricity generation.4 The Hydrogen Council, a group established in 2017 by British Petroleum, Shell, and other oil and gas majors, has called for heating all homes with hydrogen in the future.5
The vast majority of hydrogen (96%) is generated from fossil fuels, particularly from steam methane reforming (SMR) of natural gas but also from coal gasification.6 In SMR, which is responsible for approximately three quarters of all hydrogen production globally,7 heat and pressure are used to convert the methane in natural gas to hydrogen and carbon dioxide. The hydrogen so produced is often referred to as “gray hydrogen,” to contrast it with the “brown hydrogen” made from coal gasification.8 Production of gray hydrogen is responsible for 6% of all natural gas consumption globally.7 Hydrogen can also be generated by electrolysis of water. When such electricity is produced by a clean, renewable source, such as hydro, wind, or solar, the hydrogen is termed “green hydrogen.” In 2019, green hydrogen was not cost competitive with gray hydrogen,9 but that is changing as the cost of renewables is decreasing rapidly and electrolyzers are becoming more efficient. Still, the supply of green hydrogen in the future seems limited for at least the next several decades.2, 5
Greenhouse gas emissions from gray hydrogen are high,10, 11 and so increasingly the natural gas industry and others are promoting “blue hydrogen”.5, 8, 9 Blue hydrogen is a relatively new concept and can refer to hydrogen made either through SMR of natural gas or coal gasification, but with carbon dioxide capture and storage. As of 2021, there were only two blue-hydrogen facilities globally that used natural gas to produce hydrogen at commercial scale, as far as we can ascertain, one operated by Shell in Alberta, Canada, and the other operated by Air Products in Texas, USA.12 Often, blue hydrogen is described as having zero or low greenhouse gas emissions.8, 9 However, this is not true: not all of carbon dioxide emissions can be captured, and some carbon dioxide is emitted during the production of blue hydrogen.1 Further, to date no peer-reviewed analysis has considered methane emissions associated with producing the natural gas needed to generate blue hydrogen.1 Methane is a powerful greenhouse gas. Compared mass-to-mass, it is more than 100-times more powerful as a warming agent than carbon dioxide for the time both gases are in the atmosphere and causes 86-times the warming as carbon dioxide over an integrated 20-year time frame after a pulsed emission of the two gases. Approximately 25% of the net global warming that has occurred in recent decades is estimated to be due to methane.13 In a recent report, the United Nations Environment Programme concluded that methane emissions globally from all sources need to be reduced by 40%-45% by 2030 in order to achieve the least cost pathway for limiting the increase in the Earth's temperature to 1.5°C, the target set by COP 21 in Paris in December 2015.14
Here, we explore the full greenhouse gas footprint of both gray and blue hydrogen, accounting for emissions of both methane and carbon dioxide. For blue hydrogen, we focus on that made from natural gas rather than coal, that is gray hydrogen combined with carbon capture and storage. In China, brown hydrogen from coal now dominates over gray hydrogen from natural gas, due to the relative prices of natural gas and coal, but globally and particular in Europe and North America, gray hydrogen dominates.1
El hidrógeno se considera un combustible importante para la futura transición energética. En la actualidad, el hidrógeno se utiliza sobre todo en la industria durante el refinado del petróleo y la producción de fertilizantes nitrogenados sintéticos, y se utiliza poco para la energía porque es caro en relación con los combustibles fósiles.1 Sin embargo, el hidrógeno se promueve cada vez más como una forma de abordar el cambio climático, como se indica en un artículo reciente en el New York Times.2 En esta opinión, el hidrógeno se va a utilizar no sólo para los sectores de la economía difíciles de descarbonizar, como el transporte de larga distancia en camiones y aviones, sino también para la calefacción y la cocina, con el hidrógeno mezclado con gas natural y distribuido a los hogares y las empresas a través de los sistemas de tuberías existentes.2 Las empresas de servicios públicos también están explorando el uso de hidrógeno, de nuevo mezclado con gas natural, para alimentar las instalaciones de generación eléctrica existentes.3 En Europa, un informe reciente de Gas for Climate, una asociación de empresas de gasoductos de gas natural, prevé el uso a gran escala del hidrógeno en el futuro para la calefacción y la generación de electricidad.4 El Consejo del Hidrógeno, un grupo creado en 2017 por British Petroleum, Shell y otras grandes empresas de petróleo y gas, ha pedido que se calienten todos los hogares con hidrógeno en el futuro.5
La gran mayoría del hidrógeno (96%) se genera a partir de combustibles fósiles, en particular del reformado de metano por vapor (SMR) del gas natural, pero también de la gasificación del carbón.6 En el SMR, que es responsable de aproximadamente tres cuartas partes de toda la producción de hidrógeno a nivel mundial,7 se utiliza calor y presión para convertir el metano del gas natural en hidrógeno y dióxido de carbono. El hidrógeno así producido suele denominarse "hidrógeno gris", en contraste con el "hidrógeno marrón" que se obtiene de la gasificación del carbón.8 La producción de hidrógeno gris es responsable del 6% de todo el consumo de gas natural en el mundo.7 El hidrógeno también puede generarse por electrólisis del agua. Cuando dicha electricidad es producida por una fuente limpia y renovable, como la hidráulica, la eólica o la solar, el hidrógeno se denomina "hidrógeno verde." En 2019, el hidrógeno verde no era competitivo en cuanto a costes con el hidrógeno gris9 , pero eso está cambiando, ya que el coste de las energías renovables está disminuyendo rápidamente y los electrolizadores son cada vez más eficientes. Aun así, el suministro de hidrógeno verde en el futuro parece limitado al menos durante las próximas décadas.2, 5
Las emisiones de gases de efecto invernadero del hidrógeno gris son elevadas,10, 11 por lo que cada vez más la industria del gas natural y otros están promoviendo el "hidrógeno azul".5, 8, 9 El hidrógeno azul es un concepto relativamente nuevo y puede referirse al hidrógeno fabricado mediante SMR de gas natural o gasificación de carbón, pero con captura y almacenamiento de dióxido de carbono. Hasta 2021, sólo había dos instalaciones de hidrógeno azul en todo el mundo que utilizaban gas natural para producir hidrógeno a escala comercial, por lo que hemos podido comprobar, una operada por Shell en Alberta (Canadá) y la otra por Air Products en Texas (EE.UU.).12 A menudo se describe el hidrógeno azul como un producto con cero o bajas emisiones de gases de efecto invernadero, 9 Sin embargo, esto no es cierto: no todas las emisiones de dióxido de carbono pueden capturarse, y se emite algo de dióxido de carbono durante la producción de hidrógeno azul.1 Además, hasta la fecha ningún análisis revisado por expertos ha considerado las emisiones de metano asociadas a la producción del gas natural necesario para generar hidrógeno azul.1 El metano es un potente gas de efecto invernadero. Comparado masa a masa, es más de 100 veces más potente como agente de calentamiento que el dióxido de carbono durante el tiempo que ambos gases están en la atmósfera y provoca un calentamiento 86 veces superior al del dióxido de carbono en un periodo integrado de 20 años tras una emisión pulsada de los dos gases. Se calcula que aproximadamente el 25% del calentamiento global neto que se ha producido en las últimas décadas se debe al metano.13 En un informe reciente, el Programa de las Naciones Unidas para el Medio Ambiente concluyó que las emisiones de metano a nivel mundial, procedentes de todas las fuentes, deben reducirse entre un 40% y un 45% para el año 2030, con el fin de lograr la vía de menor coste para limitar el aumento de la temperatura de la Tierra a 1,5°C, el objetivo fijado por la COP 21 de París en diciembre de 2015.14
Aquí exploramos toda la huella de gases de efecto invernadero del hidrógeno gris y azul, teniendo en cuenta las emisiones de metano y de dióxido de carbono. En el caso del hidrógeno azul, nos centramos en el producido a partir de gas natural y no de carbón, es decir, el hidrógeno gris combinado con la captura y el almacenamiento de carbono. En China, el hidrógeno marrón procedente del carbón domina ahora sobre el hidrógeno gris procedente del gas natural, debido a los precios relativos del gas natural y del carbón, pero a nivel mundial, y en particular en Europa y Norteamérica, domina el hidrógeno gris.1
2 ESTIMATING EMISSIONS FROM PRODUCING GRAY HYDROGEN
Greenhouse gas emissions from the production of gray hydrogen can be separated into two parts: (a) the SMR process in which methane is converted to carbon dioxide and hydrogen; and (b) the energy used to generate the heat and high pressure needed for the SMR process. For blue hydrogen, which we discuss later in this paper, emissions from the generation of electricity needed to run the carbon dioxide capture equipment must also be included. In this analysis, we consider emissions of only carbon dioxide and methane, and not of other greenhouse gases such as nitrous oxide that are likely to be much smaller. For methane, we consider the major components of its lifecycle emissions associated with the mining, transport, storage, and use of the natural gas needed to produce the hydrogen and power carbon capture. Emissions are expressed per unit energy produced when combusting the hydrogen, to aid in comparing the greenhouse gas footprint with other fuels.15, 16 In this paper, we use gross calorific values.
We start by estimating how much methane is consumed and how much carbon dioxide is produced in the two aspects of production of gray hydrogen. From this information, we can subsequently below estimate emissions of unburned methane.
Las
emisiones de gases de efecto invernadero de la producción de hidrógeno
gris pueden separarse en dos partes: (a) el proceso de SMR en el que el
metano se convierte en dióxido de carbono e hidrógeno; y (b) la energía
utilizada para generar el calor y la alta presión necesarios para el
proceso de SMR. En el caso del hidrógeno azul, del que hablamos más
adelante, también hay que incluir las emisiones procedentes de la
generación de electricidad necesaria para el funcionamiento del equipo
de captura de dióxido de carbono. En este análisis, sólo consideramos
las emisiones de dióxido de carbono y de metano, y no las de otros gases
de efecto invernadero, como el óxido nitroso, que probablemente sean
mucho menores. En el caso del metano, tenemos en cuenta los principales
componentes de las emisiones de su ciclo de vida asociados a la
extracción, el transporte, el almacenamiento y el uso del gas natural
necesario para producir el hidrógeno y alimentar la captura de carbono.
Las emisiones se expresan por unidad de energía producida al quemar el
hidrógeno, para facilitar la comparación de la huella de gases de efecto
invernadero con otros combustibles.15, 16 En este trabajo, utilizamos
valores caloríficos brutos.
Comenzamos estimando cuánto metano se
consume y cuánto dióxido de carbono se produce en los dos aspectos de
la producción de hidrógeno gris. A partir de esta información, podemos
estimar a continuación las emisiones de metano no quemado.
2.1 Consumption of methane and production of carbon dioxide in SMR process
Gray H2 | Blue H2 (w/o flue-gas capture) | Blue H2 (w/flue-gas capture) | |
---|---|---|---|
SMR process | |||
CH4 consumed (g CH4/MJ) | 14.0 | 14.0 | 14.0 |
CO2 produced (g CO2/MJ) | 38.5 | 38.5 | 38.5 |
Fugitive CH4 emissions (g CH4/MJ) | 0.49 | 0.49 | 0.49 |
Fugitive CH4 emissions (g CO2eq/MJ) | 42.1 | 42.1 | 42.1 |
Direct CO2 emissions (g CO2/MJ) | 38.5 | 5.8 | 5.8 |
CO2 capture rate | 0% | 85% | 85% |
Energy to drive SMR | |||
CH4 consumed (g CH4/MJ) | 11.6 | 11.6 | 11.6 |
CO2 produced (g CO2/MJ) | 31.8 | 31.8 | 31.8 |
Fugitive CH4 emissions (g CH4/MJ) | 0.41 | 0.41 | 0.41 |
Fugitive CH4 emissions (g CO2eq/MJ) | 35.3 | 35.3 | 35.3 |
Direct CO2 emissions (g CO2/MJ) | 31.8 | 31.8 | 11.1 |
CO2 capture rate | 0% | 0% | 65% |
Energy to power carbon capture | |||
CH4 consumed (g CH4/MJ) | 0 | 3.0 | 6.0 |
CO2 produced (g CO2/MJ) | 0 | 8.2 | 16.3 |
Fugitive CH4 emissions (g CH4/MJ) | 0 | 0.11 | 0.21 |
Fugitive CH4 emissions (g CO2eq/MJ) | 0 | 9.5 | 1 |
Direct CO2 emissions (g CO2/MJ) | 0 | 8.2 | 16.0 |
Indirect upstream CO2 emissions (g CO2/MJ) |
5.3 |
5.9 |
6.5 |
Total CH4 consumed (g CH4/MJ) |
25.6 |
28.6 |
31.6 |
Total CO2 emitted (g CO2/MJ) |
75.6 | 51.7 | 39.7 |
Total fugitive CH4 emissions (g CO2eq/MJ) | 77.4 | 86.9 | 95.4 |
Total emissions (g CO2eq/MJ) | 153 | 139 | 135 |
Note
- The methane leakage rate is 3.5%.
With a molecular weight of 16.04 g per mole, 14.04 g CH4 per MJ is consumed during the SMR process (Table 1). There is essentially no uncertainty in these estimates of how much methane is consumed, and how much carbon dioxide is produced during the SMR process: the relationship is set by the chemical stoichiometry shown in Equation (1).
2.2 Consumption of methane and production of carbon dioxide from energy needed to drive SMR process
That is, 0.1814 MJ of energy from burning methane is required per mole of hydrogen produced. When burning natural gas for heat, 50 g CO2 per MJ in emissions are produced, using gross calorific values.19 Note that higher carbon dioxide emission values are reported when using net calorific values.
See Table 1.
2.3 Total carbon dioxide and methane emissions for gray hydrogen
The sum of the carbon dioxide from the SMR process (38.5 g CO2 per MJ) and from the energy used to generate the heat and electricity for the SMR (31.8 g CO2 per MJ) is 70.3 g CO2 per MJ. Additionally, it takes energy to produce, process, and transport the natural gas used to generate the hydrogen. Using the analysis of Santoro et al.20 as reported in Howarth et al,21 these indirect upstream emissions are approximately 7.5% of the direct carbon dioxide emissions for natural gas, or an additional 5.3 g CO2 per MJ (7.5% of 70.3 g CO2 per MJ). Therefore, the total quantity of carbon dioxide produced is 75.6 g CO2 per MJ (Table 1).
The sum of emissions of carbon dioxide (75.6.0 g CO2 per MJ) and unburned methane (77.4 g CO2eq per MJ) for the production of gray hydrogen is 153 g CO2eq per MJ (Table 1).
There are remarkably few published peer-reviewed papers with which to compare our estimate. Many non peer-reviewed reports give estimates for carbon dioxide emission from gray hydrogen that are in the range of 10 tons carbon dioxide per ton of hydrogen,1, 7 although data in support of these values are generally absent, perhaps because they are based on confidential information.11 Since the gross calorific heat energy content of hydrogen is 0.286 MJ per mole,17 10 tons of carbon dioxide per ton of hydrogen corresponds to 70 g CO2 per MJ. This is similar to but somewhat lower than our value of 75.6 g CO2 per MJ. Most of these non peer-reviewed reports do not include methane in their estimates,1 or if they do, they provide no detail as to how they do so. The most thorough peer-reviewed analysis of carbon dioxide emissions for gray hydrogen is that of Sun et al11 who obtained data on both rates of hydrogen production and emissions of carbon dioxide from many individual facilities across the United States. They concluded that on average, carbon dioxide emissions for gray hydrogen are 77.8 g CO2 per MJ, remarkably close to our value of 75.6 g CO2 per MJ. They did not estimate methane emissions.
3 ESTIMATING EMISSIONS FOR BLUE HYDROGEN
Blue hydrogen differs from gray hydrogen in that, with blue hydrogen, some of the carbon dioxide released by the SMR process is captured. In another version of the blue-hydrogen process, additional carbon dioxide is removed from the flue gases created from burning natural gas to provide the heat and high pressure needed to drive the SMR process. A third set of emissions, not usually captured, is the carbon dioxide and methane from the energy used to produce the electricity for the carbon-capture equipment.
3.1 How much carbon dioxide is emitted after carbon capture?
That is, 5.8 g CO2 per MJ are emitted from the SMR process after emissions are treated for carbon capture (Table 1).
Therefore, total carbon dioxide emissions from the SMR process, including the energy used to drive the process, are in the range of 16.9 g CO2 per MJ if the combustion flue is captured (5.8 g CO2 per MJ plus 11.1 g CO2 per MJ) to 37.6 g CO2 per MJ (5.8 g CO2 per MJ plus 31.8 g CO2 per MJ) if the flue gases are not treated (Table 1).
3.2 Consumption of methane and production of carbon dioxide from electricity used to capture carbon dioxide
Energy is required to capture the carbon dioxide, and often this is provided by electricity generated from burning additional natural gas.7 The existing blue-hydrogen facilities make no effort to capture the carbon dioxide from the fuel burned to generate this electricity, nor has there been any effort to do so in the case of carbon capture from coal-burning power plants.31 Often, an energy penalty of 25% is assumed for this additional electricity.34-36 However, this estimate is based on very little publicly available, verifiable information and may be optimistically low. A recent analysis of carbon capture from the flue gases of a coal-burning power plant, where the electricity for carbon capture came from a dedicated natural gas plant, found that the carbon dioxide emissions from the natural gas were 39% of the carbon dioxide captured from the coal-flue gases.31 Carbon dioxide is more concentrated in the gases produced through SMR than in the flue exhaust from combustion, suggesting that it can be captured more easily.
That is, emissions from the energy used to drive the carbon captured from the SMR process are themselves an additional 8.2 g CO2 per MJ (Table 1).
Therefore, the carbon dioxide emissions from the energy used to drive the carbon capture is between 8.2 g CO2 per MJ if only emissions from the SMR process are captured or an additional 8.1 g CO2 per MJ for a total of 16.3 g CO2 per MJ if emissions from the energy source used for heat and pressure are also captured (Table 1).
Therefore, the quantify of methane used to drive carbon capture when the flue gases from the combustion of the gas used to generate heat and pressure for the SMR process are 3.0 g CH4 per MJ plus 3.0 g CH4 per MJ, for a total of 6.0 g CH4 per MJ when carbon capture is applied both to SMR and exhaust flue gases (Table 1).
Therefore, upstream emissions of unburned methane from the energy used to drive carbon capture are between 9.5 g CO2eq per MJ if only the SMR carbon is captured and 18 g CO2eq per MJ if the flue-gas emissions are also captured (Table 1).
3.3 Total carbon dioxide and methane emissions for blue hydrogen
To summarize, when only the carbon from the SMR process itself is captured, total emissions of carbon dioxide are 51.7 g CO2 per MJ. When efforts are also taken to capture the carbon dioxide from the flue exhaust from the energy driving the reforming process, total carbon dioxide emissions are 39.7 g CO2 per MJ (Table 1). Treating the exhaust flue gases for carbon capture reduces total lifecycle emissions of carbon dioxide by 23%, less than might have been expected. This is due both to a relatively low efficiency for the carbon capture of flue gases31 and to the increased combustion of natural gas needed to provide the electricity for the carbon capture.
We are aware of no previously published, peer-reviewed analyses on either total carbon dioxide or methane emissions associated with producing blue hydrogen. Several non peer-reviewed reports suggest that it may be possible to reduce carbon dioxide emissions for blue hydrogen by 56% (when only the SMR process is treated) to 90% (when exhaust flue gases are also treated) relative to gray hydrogen.1, 7 However, no data have been presented to support these estimates, and they apparently do not include emissions associated with the energy needed to drive carbon capture. Our results using a full lifecycle assessment show the 56% to 90% assumptions are too optimistic.
In Figure 1, we compare the greenhouse gas footprint of gray hydrogen with blue hydrogen where only the SMR process is captured and with blue hydrogen where carbon capture is also used for the exhaust flue gases. Because of the increased methane emissions from increased use of natural gas when flue gases are treated for carbon capture, total greenhouse gas emissions are only very slightly less than when just the carbon dioxide from the stream reforming process is treated, 135 vs 139 g CO2eq per MJ. In both cases, total emissions from producing blue hydrogen are only 9% to 12% less than for gray hydrogen, 135 or 139 g CO2eq per MJ compared with 153 g CO2eq per MJ. Blue hydrogen is hardly “low emissions.” The lower, but nonzero, carbon dioxide emissions from blue hydrogen compared with gray hydrogen are partially offset by the higher methane emissions. We further note that blue hydrogen as a strategy only works to the extent it is possible to store carbon dioxide long term indefinitely into the future without leakage back to the atmosphere.
4 COMPARISON OF EMISSIONS WITH OTHER FUELS AND SENSITIVITY ANALYSES
4.1 Emissions for fossil fuels
In Figure 1, we also compare greenhouse gas emissions from gray and blue hydrogen with those for other fuels per unit of energy produced when burned. The carbon dioxide emissions shown for coal, diesel oil, and natural gas include both direct and indirect emissions. The direct emissions are based on gross calorific values from EIA.19 Indirect emissions are those required to develop and process the fuels and are based on Howarth et al.21 These indirect carbon dioxide emissions are 4 g CO2 per MJ for coal, 8 g CO2 per MJ, and 3.8 g CO2 per MJ for natural gas. Upstream fugitive emissions of unburned methane are assumed to be 3.5% for natural gas, as we have assumed for the hydrogen estimates. Methane emissions for coal and diesel oil are as presented in Howarth24: 0.185 g CH4 per MJ for coal and 0.093 g CH4 per MJ for diesel oil, corresponding to 8.0 and 15.9 4 g CO2eq per MJ respectively based on a 20-year GWP of 86.
Combined emissions of carbon dioxide and methane are greater for gray hydrogen and for blue hydrogen (whether or not exhaust flue gases are treated for carbon capture) than for any of the fossil fuels (Figure 1). Methane emissions are a major contributor to this, and methane emissions from both gray and blue hydrogen are larger than for any of the fossil fuels. This reflects the large quantities of natural gas consumed in the production of hydrogen. Carbon dioxide emissions are less from either gray or blue hydrogen than from coal or diesel oil. Carbon dioxide emissions from blue hydrogen are also less than from using natural gas directly as a fuel, but not substantially so. Carbon dioxide emissions from gray hydrogen are somewhat larger than from natural gas (Figure 1).
4.2 Sensitivity analyses for methane emissions
Given the importance of methane emissions to the greenhouse gas footprints of gray and blue hydrogen, we here present sensitivity analyses on our estimates. We separately consider different rates of fugitive methane emissions and different assigned GWP values.
Our default value for methane emissions used above for gray hydrogen, blue hydrogen, and natural gas is 3.5% of consumption. As noted above, this is based on top–down estimates for emissions from 20 different studies in 10 different gas fields plus a top–down estimate for emissions from gas transport and storage.16 This is very close to an independent estimate of emissions from shale gas production and consumption estimated from global trends in the 13C stable isotopic composition of methane in the atmosphere since 2005.37 For the sensitivity analysis, we also evaluate one higher rate and two lower rates of methane emission. The higher rate is from the high-end sensitivity analysis for shale gas emissions based on the global 13C data, or 4.3% of consumption.37 The lower rates we analyze are 2.54% and 1.45% of consumption. The 2.54% value is based on Alvarez et al22 who used “bottom–up” approaches to estimate the upstream and midstream methane emissions for natural gas in the United States as 12.7 Tg per year in 2015. This is 2.54% of consumption, based on annual gas consumption for 2015 of 771 billion m3 of natural gas in the United States,26 assuming methane comprises 93% of the volume of gas.38 The bottom–up approach presented by Alvarez et al22 likely underestimates methane emissions.24, 39, 40 We also consider an even lower estimate based on Maasakkers et al.41 Using an inverse model in combination with satellite data and the US EPA methane emissions inventory, they concluded that methane emissions from natural gas operations in the United States were 8.5 T per year in 2012. This is 1.45% of gas consumption, based on again assuming methane is 93% of gas and a national US consumption of gas of 723 billion m3 in 2012.26
Our baseline analysis is based on a 20-year GWP value of 86.13 There is uncertainty in this estimate, so here we also explore the higher 20-year GWP value of 105 presented in Shindell et al.42 Most traditional greenhouse gas inventories use a 100-year GWP, so we explore that as well, using the latest value from the IPCC13 synthesis report of 34. However, the IPCC13 noted that the use of a 100-year time period is arbitrary. We prefer the use of 20-year GWP, since it better captures the role of methane as a driver of climate change over the time period of the next several decades, and the 100-year time frame discounts the importance of methane over these shorter time frames.15, 24
In our sensitivity analyses, we substitute emission rates of 4.3%, 2.54%, and 1.54% for our baseline value of 3.5% in Equations 9, 17, and 18 for gray and blue hydrogen and in our estimate for natural gas presented in Figure 1. We also substitute a 20-year GWP value of 105 and a 100-year GWP value of 34 for the 20-year GWP of 86 used in Equations 10, 19, and 20. The sensitivity estimates are shown in Table 2. Across the full set of assumptions, both gray hydrogen and blue hydrogen without flue-gas capture (where only the carbon dioxide from SMR is captured) always have greater emissions than natural gas. The differences between the greenhouse gas footprint of blue hydrogen with or without the capture of carbon dioxide from the exhaust flue gases are generally small across all assumptions concerning fugitive methane emissions, with the total greenhouse gas emissions without the flue-gas treatment usually higher. The emissions from blue hydrogen with full carbon capture including the exhaust flue gases are higher than for natural gas across all set of assumptions except for the analysis with the 100-year GWP of 34 and low methane emissions, 2.54% or less (Table 2).
Gray H2 | Blue H2 (w/o flue-gas capture) | Blue H2 (w/flue-gas capture) | Natural gas | |
---|---|---|---|---|
Fugitive CH4 = 3.5% | ||||
GWP20 = 8 | 153 | 139 | 135 | 111 |
GWP20 = 105 | 170 | 158 | 155 | 123 |
GWP100 = 34 | 106 | 86 | 77 | 76 |
Fugitive CH4 = 4.3% | ||||
GWP20 = 86 | 171 | 159 | 156 | 124 |
GWP20 = 105 | 192 | 182 | 181 | 139 |
GWP100 = 34 | 113 | 94 | 86 | 81 |
Fugitive CH4 = 2.54% | ||||
GWP20 = 86 | 133 | 115 | 109 | 95 |
GWP20 = 105 | 144 | 129 | 124 | 104 |
GWP100 = 34 | 98 | 76 | 67 | 70 |
Fugitive CH4 = 1.54% | ||||
GWP20 = 86 | 110 | 90 | 82 | 79 |
GWP20 = 105 | 117 | 98 | 91 | 84 |
GWP100 = 34 | 89 | 67 | 57 | 64 |
We also evaluate the sensitivity of our conclusions to the percentage of carbon dioxide that is captured from SMR and from the flue exhaust from the natural gas burned to power the SMR process. Our default values presented above are for 85% capture from the SMR process and 65% capture from the flue gases, if an effort were made to capture those. Our sensitivity analysis includes a low estimate for SMR capture of 78.8% based on actual data from one commercial blue-hydrogen plant30 and a high estimate of 90%, the highest yet reported.31 For capture of the flue gases, we explore carbon dioxide capture efficiencies of 55% at the low end and 90% at the high-end based on actual facility performance for flue gases from coal-burning electric plants.31-33 Note that the 90% rate is the best ever observed and does not reflect likely actual performance under long-term commercial operations. We present the results of this sensitivity analysis in Table 3. Perhaps surprisingly, our conclusions are very insensitive to assumptions about carbon dioxide capture rates. This is because capture is very energy intensive: to capture more carbon dioxide takes more energy, and if this energy comes from natural gas, the emissions of both carbon dioxide and fugitive methane emissions from this increase in such proportion as to offset a significant amount of the reduction in carbon dioxide emission due to the carbon capture.
Total CO2 | Total fugitive CH4 | Total emissions | |
---|---|---|---|
Blue H2 w/o flue-gas capture | |||
85% SMR capture | 51.7 | 86.9 | 139 |
90% SMR capture | 50.2 | 86.9 | 137 |
78.8% SMR capture | 53.5 | 85.7 | 139 |
Blue H2 w/flue-gas capture | |||
85% SMR & 65% flue-gas capture | 39.7 | 95.4 | 135 |
90% SMR & 90% flue-gas capture | 33.3 | 98.9 | 132 |
78.8% SMR & 55% flue-gas capture | 43.4 | 93.2 | 137 |
Note
- The methane leakage rate is 3.5%. The first row in each case is from the baseline case in Table 1.
These sensitivity analyses show that our overall conclusion is robust: the greenhouse gas footprint of blue hydrogen, even with capture of carbon dioxide from exhaust flue gases, is as large as or larger than that of natural gas.
5 IS THERE A PATH FOR TRULY “GREEN” BLUE HYDROGEN?
Some of the CO2eq emissions from blue hydrogen are inherent in the extraction, processing, and use of natural gas as the feedstock source of methane for the SMR process: fugitive methane emissions and upstream emissions of carbon dioxide from the energy needed to produce, process, and transport the natural gas that is reformed into hydrogen are inescapable. On the other hand, the emissions of methane and carbon dioxide from using natural gas to produce the heat and high pressure needed for SMR and to capture carbon dioxide could be reduced if these processes were instead driven by renewable electricity from wind, solar, or hydro. If we assume essentially zero emissions from the renewable electricity, then carbon dioxide emissions from blue hydrogen could be reduced to the 5.8 g CO2 per MJ that is not captured from the SMR process (Equation 11) plus the indirect emissions from extracting and processing the natural gas used as feedstock for the SMR process, estimated as 2.9 g CO2 per M (7.5% of 38.5 g CO2 per MJ; see section on “total carbon dioxide and methane emissions for gray hydrogen”), for a total of 8.7 g CO2 per MJ. This is a substantial reduction compared with using natural gas to power the production of blue hydrogen. However, the fugitive methane emissions associated with the natural gas that is reformed to hydrogen would remain if the process is powered by 100% renewable energy. These emissions are substantial: 3.5% of 14 g CH4 per MJ (Equation 3). Using the 20-year GWP value of 86, these methane emissions equal 43 g CO2eq per MJ of hydrogen produced. The total greenhouse gas emissions, then, for this scenario of blue hydrogen produced with renewable electricity are 52 g (8.7 g plus 43 g) CO2eq per MJ. This is not a low-emissions strategy, and emissions would still be 47% of the 111 g CO2eq per MJ for burning natural gas as a fuel, using the same methane emission estimates and GWP value (Table 1). Seemingly, the renewable electricity would be better used to produce green hydrogen through electrolysis.
This best-case scenario for producing blue hydrogen, using renewable electricity instead of natural gas to power the processes, suggests to us that there really is no role for blue hydrogen in a carbon-free future. Greenhouse gas emissions remain high, and there would also be a substantial consumption of renewable electricity, which represents an opportunity cost. We believe the renewable electricity could be better used by society in other ways, replacing the use of fossil fuels.
Similarly, we see no advantage in using blue hydrogen powered by natural gas compared with simply using the natural gas directly for heat. As we have demonstrated, far from being low emissions, blue hydrogen has emissions as large as or larger than those of natural gas used for heat (Figure 1; Table 1; Table 2). The small reduction in carbon dioxide emissions for blue hydrogen compared with natural gas are more than made up for by the larger emissions of fugitive methane. Society needs to move away from all fossil fuels as quickly as possible, and the truly green hydrogen produced by electrolysis driven by renewable electricity can play a role. Blue hydrogen, though, provides no benefit. We suggest that blue hydrogen is best viewed as a distraction, something than may delay needed action to truly decarbonize the global energy economy, in the same way that has been described for shale gas as a bridge fuel and for carbon capture and storage in general.43 We further note that much of the push for using hydrogen for energy since 2017 has come from the Hydrogen Council, a group established by the oil and gas industry specifically to promote hydrogen, with a major emphasis on blue hydrogen.5 From the industry perspective, switching from natural gas to blue hydrogen may be viewed as economically beneficial since even more natural gas is needed to generate the same amount of heat.
We emphasize that our analysis in this paper is a best-case scenario for blue hydrogen. It assumes that the carbon dioxide that is captured can indeed be stored indefinitely for decades and centuries into the future. In fact, there is no experience at commercial scale with storing carbon dioxide from carbon capture, and most carbon dioxide that is currently captured is used for enhanced oil recovery and is released back to the atmosphere.44 Further, our analysis does not consider the energy cost and associated greenhouse gas emissions from transporting and storing the captured carbon dioxide. Even without these considerations, though, blue hydrogen has large climatic consequences. We see no way that blue hydrogen can be considered “green.”
Algunas
de las emisiones de CO2eq del hidrógeno azul son inherentes a la
extracción, el procesamiento y el uso del gas natural como fuente de
alimentación de metano para el proceso de SMR: las emisiones fugitivas
de metano y las emisiones de dióxido de carbono procedentes de la
energía necesaria para producir, procesar y transportar el gas natural
que se transforma en hidrógeno son ineludibles. Por otro lado, las
emisiones de metano y dióxido de carbono derivadas del uso de gas
natural para producir el calor y la alta presión necesarios para la SMR y
para capturar el dióxido de carbono podrían reducirse si estos procesos
se impulsaran con electricidad renovable procedente de la energía
eólica, solar o hidráulica. Si suponemos que las emisiones de la
electricidad renovable son prácticamente nulas, las emisiones de dióxido
de carbono del hidrógeno azul podrían reducirse a los 5,8 g de CO2 por
MJ que no se capturan del proceso de SMR (ecuación 11) más las emisiones
indirectas de la extracción y el procesamiento del gas natural
utilizado como materia prima para el proceso de SMR, estimadas en 2,9 g
de CO2 por M (7,5% de 38,5 g de CO2 por MJ; véase la sección sobre
"emisiones totales de dióxido de carbono y metano para el hidrógeno
gris"), lo que supone un total de 8,7 g de CO2 por MJ. Se trata de una
reducción sustancial en comparación con el uso de gas natural para la
producción de hidrógeno azul. Sin embargo, las emisiones fugitivas de
metano asociadas al gas natural reformado en hidrógeno se mantendrían si
el proceso se alimentara con energía 100% renovable. Estas emisiones
son considerables: 3,5% de 14 g de CH4 por MJ (ecuación 3). Utilizando
el valor de GWP de 86 en 20 años, estas emisiones de metano equivalen a
43 g de CO2eq por MJ de hidrógeno producido. Las emisiones totales de
gases de efecto invernadero, por tanto, para este escenario de hidrógeno
azul producido con electricidad renovable son de 52 g (8,7 g más 43 g)
de CO2eq por MJ. Esta no es una estrategia de bajas emisiones, y las
emisiones seguirían siendo el 47% de los 111 g de CO2eq por MJ de la
quema de gas natural como combustible, utilizando las mismas
estimaciones de emisiones de metano y el mismo valor de GWP (Tabla 1).
Aparentemente, la electricidad renovable se utilizaría mejor para
producir hidrógeno verde mediante electrólisis.
Este escenario
óptimo para la producción de hidrógeno azul, utilizando electricidad
renovable en lugar de gas natural para alimentar los procesos, nos
sugiere que realmente no hay un papel para el hidrógeno azul en un
futuro libre de carbono. Las emisiones de gases de efecto invernadero
siguen siendo elevadas, y además habría un consumo importante de
electricidad renovable, lo que representa un coste de oportunidad.
Creemos que la sociedad podría utilizar mejor la electricidad renovable
de otras maneras, sustituyendo el uso de combustibles fósiles.
Del
mismo modo, no vemos ninguna ventaja en el uso de hidrógeno azul
alimentado por gas natural en comparación con el simple uso del gas
natural directamente para el calor. Como hemos demostrado, lejos de ser
bajo en emisiones, el hidrógeno azul tiene unas emisiones tan o más
grandes que las del gas natural utilizado para la calefacción (Figura 1;
Tabla 1; Tabla 2). La pequeña reducción de las emisiones de dióxido de
carbono del hidrógeno azul en comparación con el gas natural se compensa
con creces por las mayores emisiones de metano fugitivo. La sociedad
necesita alejarse de todos los combustibles fósiles lo antes posible, y
el hidrógeno verdaderamente ecológico producido por electrólisis
impulsada por electricidad renovable puede desempeñar un papel. Sin
embargo, el hidrógeno azul no aporta ningún beneficio. Sugerimos que el
hidrógeno azul se vea mejor como una distracción, algo que puede
retrasar la acción necesaria para descarbonizar realmente la economía
energética mundial, de la misma manera que se ha descrito para el gas de
esquisto como combustible puente y para la captura y el almacenamiento
de carbono en general.43 Además, observamos que gran parte del impulso
al uso del hidrógeno para la energía desde 2017 ha venido del Consejo
del Hidrógeno, un grupo creado por la industria del petróleo y el gas
específicamente para promover el hidrógeno, con un gran énfasis en el
hidrógeno azul.5 Desde la perspectiva de la industria, el cambio del gas
natural al hidrógeno azul puede considerarse económicamente
beneficioso, ya que se necesita incluso más gas natural para generar la
misma cantidad de calor.
Insistimos en que nuestro análisis en
este documento es el mejor escenario para el hidrógeno azul. Supone que
el dióxido de carbono capturado puede almacenarse indefinidamente
durante décadas y siglos en el futuro. De hecho, no hay experiencia a
escala comercial con el almacenamiento de dióxido de carbono procedente
de la captura de carbono, y la mayor parte del dióxido de carbono que se
captura actualmente se utiliza para la recuperación mejorada de
petróleo y se devuelve a la atmósfera.44 Además, nuestro análisis no
tiene en cuenta el coste energético y las emisiones de gases de efecto
invernadero asociadas al transporte y almacenamiento del dióxido de
carbono capturado. Pero incluso sin estas consideraciones, el hidrógeno
azul tiene grandes consecuencias climáticas. No vemos que el hidrógeno
azul pueda considerarse "verde".
ACKNOWLEDGMENTS
This research was supported by a grant from the Park Foundation and by an endowment given by David R. Atkinson to Cornell University that supports Robert Howarth. We thank Dominic Eagleton, Dan Miller, and two anonymous reviewers for their valuable feedback on earlier drafts of this paper.
- 1 , . Decarbonized Hydrogen in the US Power and Industrial Sectors: Identifying and Incentivizing Opportunities to Lower Emissions. Report 20-25. Resources for the Future; 2020. https://media.rff.org/documents/RFF_Report_20-25_Decarbonized_Hydrogen.pdf. Accessed April 1, 2021.
- 2 , . Hydrogen is One Answer to Climate Change. Getting it is the Hard Part. New York Times; 2021. https://www.nytimes.com/2021/07/13/business/hydrogen-climate-change.html. Accessed July 15, 2021.
- 3 . New York to Test Green Hydrogen at Long Island Power Plant. Washington, DC: Utility Dive; 2021. https://www.utilitydive.com/news/new-york-to-test-green-hydrogen-at-long-island-power-plant/603130/. Accessed July 15, 2021.
- 4 , , , , , , , . Analyzing Future Demand, Supply, and Transport of Hydrogen. European Hydrogen Backbone in cooperation with Gas for Climate; 2021. https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021_v3.pdf. Accessed July 15, 2021.
- 5 . Unearthed Today: Why Oil Companies Want You to Love Hydrogen. Amsterdam, the Netherlands: Unearthed; 2020. https://unearthed.greenpeace.org/2020/12/08/unearthed-today-why-oil-companies-want-you-to-love-hydrogen/. Accessed July 15, 2021.
- 6 World Energy Council. New Hydrogen Economy: Hope or Hype?. World Energy Council; 2019. https://www.worldenergy.org/assets/downloads/WEInsights-Brief-New-Hydrogen-economy-Hype-or-Hope-ExecSum.pdf. Accessed April 2, 2021.
- 7 IEA. The Future of Hydrogen: Seizing Today's Opportunities. International Energy Agency; 2019. https://www.iea.org/reports/the-future-of-hydrogen. Accessed April 1, 2021.
- 8 . What Colour is Your Hydrogen? A Power Technology Jargon-Buster. London, UK: Power Technology; 2020. https://www.power-technology.com/features/hydrogen-power-blue-green-grey-brown-extraction-production-colour-renewable-energy-storage/. Accessed April 1, 2021.
- 9 . 2019. The Clean Hydrogen Future has Already Begun. IEA commentary, International Energy Agency. https://www.iea.org/commentaries/the-clean-hydrogen-future-has-already-begun. Accessed April 1, 2021.
- 10 , , . Switching to a U.S. hydrogen fuel cell vehicle fleet: the resultant change in emissions, energy use, and global warming gases. J Power Sources. 2005; 150: 150- 181. https://doi.org/10.1016/j.jpowsour.2005.05.092
- 11 , , , et al. Criteria air pollutants and greenhouse gas emissions from hydrogen production in U.S. steam methane reforming facilities. Environ Sci Technol. 2019; 53: 7103- 7113. https://doi.org/10.1021/acs.est.8b06197
- 12 Global CSS Institute. Global Status of CCS. The Global CSS Institute; 2020.
- 13 IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change; 2013. https://www.ipcc.ch/report/ar5/wg1/. Accessed October 15, 2020.
- 14 UNEP. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions. United Nations Environment Programme and Climate and Clean Air Coalition; 2021. ISBN: 978-92-807-3854-4. https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions. Accessed July 15, 2021.
- 15 . A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng. 2014; 2: 47- 60. https://doi.org/10.1002/ese3.35
- 16 . Methane and climate change. In: JF Stolz, WM Griffin, DJ Bain, editors. Environmental Impacts from Development of Unconventional Oil and Gas Reserves. Cambridge, UK: Cambridge University Press; 2021, in press.
- 17 NIST. NIST Standard Reference Database Number 69. National Institute of Standards and Technology, U.S. Department of Commerce; 2018. https://webbook.nist.gov/chemistry/. Accessed April 1, 2021.
- 18 , . Hydrogen: automotive fuel of the future. IEEE Power Energ Mag. 2004; 2: 40- 45. https://doi.org/10.1109/MPAE.2004.1359020
- 19 EIA. Carbon Dioxide Emissions Coefficients. Energy Information Agency, U.S. Department of Energy; 2016. https://www.eia.gov/environment/emissions/co2_vol_mass.php. Accessed October 11, 2019.
- 20 , , . Indirect emissions of carbon dioxides from Marcellus shale gas development. A technical report of the Agriculture, Energy, and Environment Program at Cornell University; 2011.
- 21 , , . Methane and the greenhouse gas footprint of natural gas from shale formations. Climatic Change Lett. 2011; 106: 679- 690. https://doi.org/10.1007/s10584-011-0061-5
- 22 , , , et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science. 2018; 361: 186- 188. https://doi.org/10.1126/science.aar7204
- 23 , , , , , . Large fugitive methane emissions from urban centers along the US east coast. Geophys Res Lett. 2019; 46: 8500- 8507. https://doi.org/10.1029/2019GL082635
- 24 . Methane emissions from fossil fuels: Exploring recent changes in greenhouse-gas reporting requirements for the State of New York. J Integr Environ Sci. 2020; 17(3): 69- 81. https://doi.org/10.1080/1943815X.2020.1789666
- 25 EIA. US Natural Gas Production Reaches Record High in 2015, Today in Energy, April 15, 2016. Energy Information Agency, U.S. Department of Energy; 2021. https://www.eia.gov/todayinenergy/detail.php?id=25832. Accessed April 21, 2021.
- 26 EIA. US Natural Gas Total Consumption. Energy Information Agency, U.S. Department of Energy; 2021. https://www.eia.gov/dnav/ng/hist/n9140us2A.htm. Accessed April 21, 2021.
- 27 , , , et al. Unmask temporal trade-offs in climate policy debates. Science. 2017; 356: 492- 493. https://doi.org/10.1126/science.aaj2350
- 28 , , . Climate policy for short- and long-lived pollutants. Nat Clim Change. 2018; 8: 933- 936. https://doi.org/10.1038/s41558-018-0328-1
- 29 , , , . Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel. Energy Proc. 2017; 114: 2690- 2712.
- 30 Government of Alberta. Quest CO2 Capture Ratio Performance, Quest Carbon Capture and Storage (CCS) Project. Government of Alberta; 2020. https://open.alberta.ca/dataset/f74375f3-3c73-4b9c-af2b-ef44e59b7890/resource/c36cf890-3b27-4e7e-b95b-3370cd0d9f7d/download/energy-quest-co2-capture-ratio-performance-2019.pdf. Accessed July 14, 2021.
- 31 . The health and climate impacts of carbon capture and direct air capture. Energy Environ Sci. 2019; 12: 3567- 3574. https://doi.org/10.1039/c9ee02709b
- 32 Petra Nova. W.A. Parish Post-Combustion CO2 Capture and Sequestration Demonstration Project. Final Scientific/Technical Report. DOE-PNPH-03311. Petra Nova Parish Holdings LLC; 2020.
- 33 . Boundary Dam 3 Coal Plant Achieves Goal of Capturing 4 Million Metric Tons of CO2 but Reaches the Goal Two Years Late. Lakewood, Ohio: Institute for Energy Economics and Financial Analysis; 2021. http://ieefa.org/wp-content/uploads/2021/04/Boundary-Dam-3-Coal-Plant-Achieves-CO2-Capture-Goal-Two-Years-Late_April-2021.pdf. Accessed July 12, 2021.
- 34 IPCC. Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change; 2005. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/. Accessed April 1, 2021.
- 35 . Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci. 2009; 2: 148- 173. https://doi.org/10.1039/B809990C
- 36 , , , , . Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat Energy. 2019; 4: 456- 465. https://doi.org/10.1038/s41560-019-0365-7
- 37 . Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences. 2019; 16: 3033- 3046. https://doi.org/10.5194/bg-16-3033-2019
- 38 , , , , , . Remote sensing of fugitive emissions from oil and gas production in North American tight geological formations. Earth's Future. 2014; 2: 548- 558. https://doi.org/10.1002/2014EF000265
- 39 , , , et al. Anthropogenic emissions of methane in the United States. Proc Natl Acad Sci USA. 2013; 110: 20018- 20022. https://doi.org/10.1073/pnas.1314392110
- 40 , , , et al. Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region. Proc Natl Acad Sci USA. 2018; 115: 11712- 11717. https://doi.org/10.1073/pnas.1805687115
- 41 , , , et al. 2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. Atmos Chem Phys. 2021; 21: 4339- 4356. https://doi.org/10.5194/acp-21-4339-2021
- 42 , , , , , . Improved attribution of climate forcing to emissions. Science. 2009; 326: 716- 718. https://doi.org/10.1126/science.1174760
- 43 . Climate Imagineering: Practices and Politics of Sunlight Reflection and Carbon Removal Assessment. Ph.D. thesis, Utrecht University; 2021. https://doi.org/10.33540/668
- 44 , . Assessing carbon capture: public policy, science, and societal need. Biophys Econ Sustainability. 2020; 5: 14. https://doi.org/10.1007/s41247-020-00080-5
No hay comentarios:
Publicar un comentario