"Se ha demostrado que la infección natural por sí sola proporciona una protección de corta duración contra la infección, lo que demuestra la importancia de la vacunación, independientemente de los antecedentes de infección. [...] Es más seguro vacunarse antes que después de la infección".
La vacunación antes o después de la infección por el SARS-CoV-2 produce una respuesta humoral robusta y anticuerpos que neutralizan eficazmente las variantes
Timothy A. Bates https://orcid.org/0000-0002-2533-7668Savannah K. McBride https://orcid.org/0000-0001-8585-8038Hans C. Leier https://orcid.org/0000-0002-0363-1444Gaelen Guzman https://orcid.org/0000-0002-7696-6034[...]Fikadu G. Tafesse https://orcid.org/0000-0002-8575-4164
Authors Info & Affiliations
Las vacunas actuales contra el COVID-19 reducen significativamente la morbilidad y la mortalidad general y son de vital importancia para controlar la pandemia. Los individuos que se han recuperado previamente de la COVID-19 tienen respuestas inmunitarias mejoradas después de la vacunación (inmunidad híbrida) en comparación con sus compañeros vacunados ingenuamente; sin embargo, los efectos de las infecciones de ruptura posteriores a la vacunación en la respuesta inmunitaria humoral aún están por determinar. Aquí, medimos las respuestas de anticuerpos neutralizantes de 104 individuos vacunados, incluyendo aquellos con infecciones de ruptura, inmunidad híbrida y sin historia de infección. Encontramos que los sueros inmunes humanos después de la infección por irrupción y la vacunación después de la infección natural, neutralizan ampliamente las variantes de SARS-CoV-2 en un grado similar. Mientras que la edad se correlaciona negativamente con la respuesta de anticuerpos después de la vacunación sola, no se encontró ninguna correlación con la edad en los grupos de inmunidad de ruptura o híbrida. En conjunto, nuestros datos sugieren que la exposición adicional al antígeno de la infección natural aumenta sustancialmente la cantidad, la calidad y la amplitud de la respuesta inmunitaria humoral, independientemente de que se produzca antes o después de la vacunación.
INTRODUCCIÓN
El coronavirus respiratorio agudo grave 2 (SARS-CoV-2) es el agente causante de la actual pandemia de la enfermedad por coronavirus 2019 (COVID-19). A nivel mundial, los casos siguen aumentando a pesar de las campañas de vacunación en todo el mundo. (1) Se han desarrollado numerosas vacunas seguras y efectivas que reducen eficazmente el riesgo de infección, enfermedad grave y muerte, entre ellas la BNT162b2 (Pfizer), la mRNA-1273 (Moderna) y la Ad26.COV2.S (Janssen). (2, 3) Sin embargo, las variantes preocupantes (VOC) con diferentes niveles de aumento de la transmisibilidad y la resistencia a la inmunidad existente han surgido secuencialmente, se han extendido ampliamente y han retrocedido con el tiempo desde el comienzo de la pandemia. (4-7) Varios estudios han demostrado que las respuestas de los anticuerpos de la oleada inicial de vacunas a principios de 2021 han disminuido durante los seis meses siguientes a la vacunación, lo que posiblemente ha contribuido a un aumento de las infecciones de inicio. (8-12) Las dosis de vacunas de refuerzo se aprobaron por primera vez en Israel en julio de 2021, y desde entonces se han adoptado de forma más generalizada en otros países para hacer frente a estos problemas, a pesar de la preocupación de que las campañas de refuerzo puedan desviar dosis de vacunas muy necesarias de los países con menores ingresos. (13)
Se ha informado de que la vacunación tras la recuperación de la infección natural por el SRAS-CoV-2, o "inmunidad híbrida", aumenta sustancialmente tanto la potencia como la amplitud de la respuesta humoral al SRAS-CoV-2. (14, 15) Sin embargo, los estudios actuales sobre la infección intermitente que se produce después de la vacunación se han centrado en la identificación de factores de susceptibilidad, como el título de neutralización del virus antes de la infección. (16) El impacto de la infección por irrupción en la respuesta de anticuerpos neutralizantes y su comparación con la respuesta provocada por la inmunidad híbrida sigue sin estar claro; por lo tanto, emprendimos el presente estudio para abordar directamente esta laguna de conocimiento.
RESULTADOS
Cohorte y diseño del estudio
Reclutamos un total de 104 participantes (Tabla 1) que consistían en 31 individuos totalmente vacunados con infecciones por disrupción confirmadas por PCR, 31 individuos con una (6 individuos) o dos dosis de vacuna (25 individuos) tras la recuperación de COVID-19 (inmunidad híbrida), y 42 individuos totalmente vacunados sin antecedentes de COVID-19 o infección por disrupción (Fig. 1A). Noventa y seis participantes recibieron BNT162b2, 6 recibieron ARNm-1273 y 2 recibieron Ad26.COV2.S. Se recogieron muestras de suero de cada uno de los participantes, que luego se analizaron para determinar las concentraciones de anticuerpos eficaces del 50% (EC50) mediante un ensayo inmunoabsorbente ligado a enzimas (ELISA), y el título neutralizante del 50% de SARS-CoV-2 vivo con pruebas de neutralización por reducción de foco (FRNT50) contra la cepa de linaje temprano de SARS-CoV-2 (WA1) y los aislados clínicos de tres COV: Alfa (B.1.1.7), Beta, (B.1.351), y Delta (B.1.617.2). Realizamos experimentos adicionales de fagocitosis celular dependiente de anticuerpos (ADCP) para evaluar cualquier diferencia funcional en la respuesta de anticuerpos de cada grupo
We first analyzed the hybrid
immunity of participants who received only a single vaccine dose
compared to those who had received two doses (Fig. S1). All measures of
antibody levels, ADCP, and live virus neutralization revealed no
significant difference between these two groups. For this reason, we
combined these samples into a single group containing participants with
both one and two vaccine doses following natural infection, which we
henceforth refer to as the hybrid immune group.
Antibody levels following breakthrough infection, hybrid immunity, and vaccination alone
ELISA geometric mean titers (GMT) EC
50
values for SARS-CoV-2 spike-specific antibodies were significantly
elevated in both the breakthrough (2.5-fold, P = 0.005) and hybrid
immune (3.6-fold, P < 0.0001) groups compared to vaccination alone,
but we saw no significant difference between the breakthrough and hybrid
groups (
Fig. 1B). A similar trend was seen for EC
50 values specific for the spike receptor binding domain (RBD) (
Fig. 1B).
We additionally confirmed that none of the vaccine-only participants
exhibited reactivity against the nucleocapsid (N) protein, supporting
lack of previous infection, whereas the breakthrough and hybrid immune
groups were 68 and 48 percent N responsive, respectively (
Fig. 1B).
Opsonization with hybrid immune and breakthrough sera also induced
phagocytosis of spike protein-coated particles in an ADCP assay
significantly more than vaccination alone, but not compared to each
other (
Fig. 1C). The levels of IgG and IgA antibodies specific to RBD protein displayed a similar trend to the total EC
50
levels with significant increases for hybrid immunity and breakthrough
compared to vaccination alone, but not compared with each other (
Fig. 1D). RBD-specific IgM values were notably low and did not differ significantly between groups. Consistent with previous reports, (
17)
spike-specific antibody levels correlated negatively with age among
vaccine-only participants. In contrast, neither the breakthrough nor
hybrid immune group recapitulated this correlation, displaying no
significant age-related trend (
Fig. 1E).
Neutralizing antibody titers against SARS-CoV-2 and the variants of concern
We
next quantified the functional activity of participants’ immune sera by
comparing their neutralization titers against early (WA1) SARS-CoV-2
and selected VOCs. Against all viruses, the trend mirrored that of the
antibody EC
50 levels, with the vaccine-only group FRNT
50 titers significantly lower than both breakthrough and hybrid immunity, which were comparable with each other (
Fig. 2A). The FRNT
50
GMT of hybrid immune group participants were 10.8, 16.9, 32.8, and
15.7-fold higher than vaccination alone for WA1, Alpha, Beta, and Delta
variants, while breakthrough group participants were 6.0, 11.8, 17.0,
and 8.5-fold higher than vaccination alone, respectively, all with P
< 0.0001. Among vaccine group participants, neutralization of the
Beta variant was significantly reduced compared to WA1, while the
difference seen for the hybrid immune and breakthrough groups was not
significant (Fig. S2).
In addition to eliciting immunity with greater breadth (
Fig. 2A),
the serum antibody potency across the breadth of VOCs tested was
greater for both hybrid immune and breakthrough groups, as measured by
an increase in the ratio of variant neutralization over WA1 FRNT50
values against Alpha and Beta for the hybrid immune and breakthrough
groups, and against Delta for the hybrid immune group (
Fig. 2B
and S3). Breakthrough and hybrid immune participants grouped more
tightly and displayed variant neutralizing titers closer to that of WA1 (
Fig. 2C-E).
Quality of the neutralizing antibody response
We
also found that hybrid immunity was associated with a remarkable
improvement in the proportion of spike-specific antibodies that were
also neutralizing. WA1 neutralizing titers correlated with
spike-specific antibody levels for all three groups, but the hybrid
immune and breakthrough groups correlated more strongly (
Fig. 3A).
To analyze the efficiency of sera at neutralizing a given virus strain,
we determined a neutralizing potency index by calculating the ratio of
neutralizing titer (FRNT50) to spike binding EC
50 values. (
18)
The index expresses a ratio of fold-serum-dilution with 50%
neutralization potency to fold-serum-dilution 50% spike binding
capacity, or a relative neutralizing antibody to total antibody ratio
for a given subject’s serum. The neutralizing potency index was
significantly higher among hybrid immune and breakthrough participants
than after vaccination alone (
Fig. 3B).
Lastly, we found that the relationship between age and total antibody
levels also extends to neutralizing titer; vaccine-only participants
displayed a clear negative correlation with age, while the hybrid immune
and breakthrough participants showed no such correlation (
Fig. 3C). No association was seen between reported sex and neutralizing titer for any of the groups (
Fig. 3D).
DISCUSSION
Overall,
our results show that SARS-CoV-2 infection before or after vaccination
gives a significantly larger boost to the neutralizing antibody response
compared to two doses of vaccine alone. More importantly, the potency
and breadth of the antibody response appears to improve concomitantly.
It has been well established that natural infection alone provides
short-lived protection from infection, (
17)
showing the importance of vaccination, regardless of infection history.
Because vaccination protects against severe disease and death, (
19) it is safer for individuals to be vaccinated before rather than after natural infection.
The
negative correlation between age and neutralizing antibody levels
following vaccination alone is an effect that has been previously
identified. (
20)
The relationship between age and antibody levels following natural
infection is markedly more complex, with a peak in antibody levels seen
between the ages of 60 and 80. (
21)
The exact reasons for this association remain to be determined, but one
hypothesis is that the greater disease severity among individuals of
advanced age leads to an overall greater humoral response. (
18)
These two opposing trends may obscure any age dependence of antibody
levels in the present study among patients with humoral responses
resulting from both vaccination and natural infection.
Estudios recientes han sugerido que la respuesta humoral continúa desarrollándose mucho tiempo después de la vacunación, con células B de memoria en puntos de tiempo tardíos después de la vacunación que muestran una mejor calidad y amplitud en comparación con los puntos de tiempo tempranos. (14, 15, 22) Nuestros datos no pueden separar la contribución de la potenciación mixta debida a la combinación de la vacunación con la infección natural, de la contribución del desarrollo de células B de memoria en curso durante el tiempo transcurrido entre la primera exposición al antígeno y la potenciación más reciente, ya sea por la vacunación o por la infección de ruptura. Futuros estudios con individuos que han sido vacunados y reforzados pueden ser capaces de distinguir entre estas posibilidades, y un primer estudio sugiere que la vacunación de refuerzo 8 meses después de una segunda dosis conduce a la mejora de los títulos neutralizantes de la variante Delta en general de 6 a 12 veces. (23) Esto parece coherente con las mejoras de 8,5 y 15,7 veces contra la variante Delta para los grupos de inmunidad de ruptura e híbrida, respectivamente, en comparación con dos dosis de vacuna solas. Esto sugiere que la magnitud de la mejora para las vacunas de refuerzo puede ser similar a las observadas con la vacunación combinada y la infección natural, incluida la inmunidad híbrida con una sola dosis de vacuna de ARNm. Esto apuntaría a la importancia del compartimento de células B de memoria en la generación de una respuesta humoral neutralizante cruzada robusta y variante. Aunque este estudio se centra en la respuesta humoral, se sabe que la respuesta celular de las células T desempeña un papel importante en la respuesta a la vacunación y a la infección por el SARS-CoV-2. (24)
Las vacunas COVID-19 que utilizan la tecnología de ARNm, incluyendo la BNT162b2 y la ARNm-1273 son las vacunas más comúnmente administradas en los Estados Unidos, donde se realizó este estudio, y la mayoría de los participantes de este estudio recibieron la vacuna BNT162b2. Sin embargo, algunos participantes recibieron la vacuna basada en el adenovirus Ad26.COV2.S. La mayoría de las investigaciones sobre la inmunidad híbrida se han centrado en la vacunación con ARNm, pero las investigaciones sobre la inmunidad híbrida de las vacunas con adenovirus han mostrado mejoras similares en los títulos de neutralización y en la neutralización cruzada de las variantes. (25) Aunque este estudio no fue diseñado para comparar la eficacia de las diferentes tecnologías de vacunación, no anticipamos ningún efecto sustancial debido a las diferencias en los tipos de vacunas.
La vacunación es muy eficaz para prevenir los resultados más graves de la COVID-19 y debe administrarse independientemente del estado de la infección previa y de la edad. Una sola dosis de la vacuna puede proporcionar suficiente protección para muchos individuos con infección previa por SARS-CoV-2. La disponibilidad de la vacuna sigue siendo limitada en muchas regiones y el camino más corto para lograr una amplia inmunidad mundial puede ser dar prioridad a la administración de al menos una dosis de vacuna al mayor número posible de personas con antecedentes confirmados de infección por el SRAS-CoV-2.
MATERIALS AND METHODS
Study design
The
purpose of this study was to directly compare the humoral immune
response among individuals who received COVID-19 vaccines either prior
to or following naturally acquired SARS-CoV-2 infection. Serum samples
were collected from participants, which were analyzed using
enzyme-linked immunosorbent (ELISA) assays, focus reduction
neutralization tests, and measurement of antibody dependent cellular
phagocytosis. Study participants were selected for inclusion based on a
history of both vaccination and previous SARS-CoV-2 infection.
Vaccinated controls with no history of previous infection were selected
on the basis of sex, age, days between vaccine doses, and the time
period since the most recent vaccination.
Cohort selection and serum collection:
Health
care workers at Oregon Health & Science University were recruited
and enrolled in the study belonging to three groups: Vaccine-only,
hybrid immunity, and breakthrough infection. Written informed consent
was obtained at the time of enrollment and study approval was obtained
from the OHSU institutional review board (IRB#00022511). Vaccine-only
participants were fully vaccinated, defined as having received 2 doses
of BNT162b2 or mRNA-1273, or 1 dose of Ad26.COV2.S. Serum samples were
collected at least 14 days after the final vaccine dose. Hybrid immune
participants had a history of PCR-confirmed diagnosis of COVID-19 at
least 10 days prior to vaccination with at least one dose of BNT162b2,
mRNA-1273, or Ad26.COV2.S and serum samples were collected at least 10
days after the final vaccine dose. Breakthrough participants were fully
vaccinated as defined for the vaccine only group at least 10 days prior
to PCR confirmed diagnosis of COVID-19 and serum samples were collected
at least 10 days after the date of diagnosis. Sera were obtained by
collecting 4-6 mL of whole blood in a BD Vacutainer Plus Plastic Serum
Tube, which was centrifuged for 10 min at 1000xg before serum was
aliquoted and stored at -20°C. Hybrid immune and breakthrough infection
participants were selected based on availability while vaccine-only
participants were selected to most closely match the average sex, age,
and time since most recent vaccination (or infection for breakthrough)
of the other two groups. Participants in these cohorts are previously
described. (
20,
26)
Enzyme-linked immunosorbent assays (ELISA):
ELISAs were performed as previously described. (
20)
In 96-well plates (Corning Incorporated, EIA/RIA High binding, Ref
#359096). Plates were coated with 100 μL/well of the following proteins
at 1 μg/mL in PBS and incubated overnight at 4°C with rocking:
SARS-CoV-2 RBD (produced in Expi293F cells and purified using Ni-NTA
chromatography), Full-length SARS-CoV-2 spike (Recombinant Spike,
SARS-CoV-2 stabilized protein, produced in Expi293F cells, BEI resources
#NR-52724), Nucleocapsid (SARS-CoV-2 Nucleocapsid-His, insect
cell-expressed, SinoBio Cat: 40588-V08B, Item #NR-53797, lot
#MF14DE1611). Plates were washed three times with 0.05% v/v Tween-20 in
PBS (wash buffer) and blocked with 150 μL/well 5% nonfat dry milk powder
in wash buffer (blocking buffer) at room temperature of approximately
20°C (RT) for 1 hour with rocking. Breakthrough and control sera were
aliquoted and frozen in dilution plates then resuspended in blocking
buffer; sera were diluted and added to ELISA plates 100 μL/well (6 ×
4-fold dilutions from 1:50 to 1:51,200), except for IgM (6 × 3-fold
dilutions from 1:25 to 1:6075). Sera was incubated for 1 hour at RT
before plates were filled three times with wash buffer. Secondary
antibodies were added to plates at 100 μL/well depending on the intended
readout: Goat anti-human IGG/A/M-HRP at 1:10,000 (Invitrogen, Ref
#A18847), anti-human IgA-HRP at 1:3,000 (BioLegend, Ref #411002), Mouse
anti-human IgG-HRP Clone G18-145 at 1:3,000 (BD Biosciences, Ref
#555788), Goat anti-human IgM-HRP at 1:3,000 (Bethyl Laboratories, Ref
#A80-100P). Plates were incubated protected from light with secondary at
RT for 1 hour with rocking, then filled three times with wash buffer
prior to the development with o-phenylenediamine dihydrochloride (OPD,
Thermo Scientific #34005) according to the manufacturer’s instructions.
The reaction was stopped after 25 min using an equivalent volume of 1 M
HCl; optical density was measured at 492 nm using a CLARIOstar plate
reader. Normalized A
492 values were calculated by subtracting the average of negative control wells and dividing by the 99
th
percentile of all wells from the same experiment. A dilution series of
positive control serum was included on each plate to verify appropriate
performance of the assay.
Cell culture:
Vero
E6 monkey kidney epithelial cells (CRL-1586) were obtained from ATCC
and maintained in tissue culture-treated vessels in Dulbecco's Modified
Eagle Medium (DMEM), 10% fetal bovine serum (FBS), 1% nonessential amino
acids (NEAA), 1% penicillin-streptomycin (PS) (complete media) in
tissue culture conditions (TCC) of 100% relative humidity, 37°C, and 5%
CO2. THP-1 (ATCC, TIB-202) human monocyte cells were obtained
from ATCC and maintained in suspension culture in tissue culture
treated vessels in Roswell Park Memorial Institute medium (RPMI-1640)
supplemented with 10% FBS, 1% NEAA, and 1% PS (THP-1 media).
SARS-CoV-2 growth and titration:
SARS-CoV-2
isolates USA-WA1/2020 [lineage A] (NR-52281), USA/CA_CDC_5574/2020
[lineage B.1.1.7 – alpha] (NR-54011), hCoV-19/South
Africa/KRISP-K005325/2020 [lineage B.1.351 – beta] (NR-54009),
hCoV-19/USA/PHC658/2021 [lineage B.1.617.2 – delta] (NR-55611) were
obtained from BEI Resources. Viral stocks were propagated as previously
described. (
5)
Sub-confluent Vero E6 cells were infected at an MOI of 0.05 in a
minimal volume (0.01 mL/cm2) of Opti-MEM + 2% FBS (dilution media) for 1
hour at TCC then 0.1 mL/cm2 additional complete media was added and
incubated for 24 hours at TCC. Culture supernatant was centrifuged for
10 min at 1000xg and frozen at -80°C in aliquots. Titration was
performed on clear 96 well tissue culture plates containing 70–90%
confluent (at the time of infection) Vero E6 cells. 8 × 10-fold
dilutions were prepared in dilution media and 30 μL/well of diluted
virus was incubated with the cells for 1 hour at TCC before further
addition of Opti-MEM, 2% FBS, 1% methylcellulose (overlay media) and
incubation for 24 hours at TCC. Plates were then fixed by soaking in 4%
formaldehyde in PBS for 1 hour then removing from BSL-3 following
institutional biosafety protocols. Cells were permeabilized in 0.1%
bovine serum albumin and 0.1% saponin in PBS (perm buffer) for 30 min,
then with polyclonal anti-SARS-CoV-2 alpaca serum (Capralogics Inc.)
(1:5000 in perm buffer) overnight at 4°C. Plates were washed three times
with 0.01% Tween-20 in PBS (focus wash buffer), then incubated for 2
hours at RT with 1:20,000 anti-alpaca-HRP (Novus #NB7242). Plates were
filled three times with focus wash buffer, then incubated with TrueBlue
(Sera Care #5510-0030) for 30 min or until sufficiently developed for
imaging. Well images were captures with a CTL Immunospot Analyzer and
counted with Viridot (1.0) in R (3.6.3). (
27) Viral stock titers in focus forming units (FFU) were calculated from the dilution factor and volume used during infection.
Focus reduction neutralization test (FRNT):
FRNT assays were carried out as described. (
5)
Duplicate 5x4.7-fold (1:10-1:4879) serial dilutions of participant sera
were prepared in 96-well plates. An equal volume of dilution media
containing approximately 50 FFU of SARS-CoV-2 or variant was added to
each well (final dilutions of sera, 1:20 – 1:9760) and incubated 1 hour
at TCC. Virus-serum mixtures were used to infect Vero E6 cells in
96-well plates as described above in the titration assay. Each plate
contained 16 virus-only control wells, one for each serum dilution
series. Fixation, development, and counting of FRNT plates was carried
out as described above in the titration assay. Percent neutralization
values were calculated for each well as the focus count divided by the
average focus count of virus-only control wells from the same plate.
Antibody Dependent Cellular Phagocytosis (ADCP):
ADCP assay was adapted from a protocol described previously. (
28)
Biotinylated RBD incubated at 1μg/ml with fluorescent neutravidin beads
(Invitrogen, F8775) for 2 hours at RT; beads were washed twice with 1%
BSA in PBS (dilution buffer) and resuspended at a final dilution of
1:100 in dilution buffer. In a 96-well plate, 10μL of resuspended bead
solution was incubated with 10μL of diluted serum from study subjects
for 2 hours at 37°C. After serum pre-treatment, 2x10
4 THP-1
cells were added to each well in 80μL THP-1 media and incubated
overnight in TCC. The following morning, 100 μL of 4% paraformaldehyde
was added to each well and incubated at least 30 min at RT before
analysis on a CytoFLEX flow cytometer (Beckman Coulter). Samples were
mixed for 3 s prior to analysis and samples were injected until at least
2500 cell events were recorded per sample. Phagocytosis scores are
reported as the product of percent bead-positive cells and mean
fluorescence intensity of bead-positive cells, then divided by 10
6
for presentation. Three replicate experiments were performed for each
participant serum sample, the average of which was used for further
analysis. The gating strategy with representative data are presented in
Fig. S4.
Statistical analysis:
FRNT
50 and EC
50 values were calculated by fitting percent neutralization or normalized A
492 values to a dose-response curve as previously described. (
5) Final FRNT
50 values below the limit of detection (1:20) were set to 1:19. Final EC
50
values below the limit of detection of 1:25 for N, Spike, RBD, IgG, IgA
were set to 1:24 and values below 1:12.5 for IgM was set to 1:12.
Aggregated EC
50 and FRNT
50 values were analyzed and plotted in Graphpad Prism (9.2.0). Dot plots of EC
50 and FRNT
50
values were generated on a log transformed axis with error bars showing
the geometric mean and 95% confidence interval. Phagocytosis score and
Neutralization ratio were plotted on a linear axis with error bars
showing the arithmetic mean and 95% confidence interval. P values for
dot plots were two-tailed and calculated using the Kruskal-Wallis test
with Dunn’s multiple comparison correction. P values for reported sex
versus neutralization were two-tailed and calculated by group using a
two-way ANOVA with the Šidák multiple comparison correction. Scatter
plots were prepared by first log transforming FRNT
50 and EC
50
data then performing simple linear fitting and plotting the 95%
confidence bands. Correlations were calculated using Spearman’s
correlation and two-tailed P values were calculated for the 95%
confidence interval.
Acknowledgments
We
acknowledge the study participants for their generous contributions;
the OHSU COVID-19 serology study team and the OHSU occupational health
department for recruitment and sample acquisition; and the OHSU clinical
laboratory under the direction of Dr. Donna Hansel and Xuan Qin for
SARS-Co-2 testing and reporting.
Funding:
This study was funded by a grant from the M.J. Murdock Charitable Trust
(MEC), an unrestricted grant from the Oregon Health & Science
University (OHSU) Foundation (MEC), the National Institutes of Health
training grant T32HL083808 (TAB), Oregon Health & Science University
Innovative IDEA grant 1018784 (FGT), and National Institutes of Health
grant R01AI145835 (WBM).
Author contributions:
Conceptualization: TAB, HCL, ZLL, WBM, MEC, FGT. Cohort recruitment:
ZLL, DS, BW, WBM, MEC. Sample acquisition and preparation: ZLL, DXL, DS,
BW, JYL, WBM, MEC. Laboratory analysis: TAB, SKM, GG. Statistical
analysis and visualization: TAB, JYL. Funding acquisition: TAB, WBM,
MEC, FGT. Supervision: WBM, MEC, FGT. Writing – original draft: TAB.
Writing – review and editing: all authors
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All data needed to support the conclusions of the paper are available in the paper or the supplementary materials.
This
work is licensed under a Creative Commons Attribution 4.0 International
(CC BY 4.0) license, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly
cited. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/.
This license does not apply to figures/photos/artwork or other content
included in the article that is credited to a third party; obtain
authorization from the rights holder before using such material.
Supplementary Materials
Other Supplementary Material for this manuscript includes the following:
MDAR Reproducibility Checklist
References and Notes
1
E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).
2
F.
P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S.
Lockhart, J. L. Perez, G. Pérez Marc, E. D. Moreira, C. Zerbini, R.
Bailey, K. A. Swanson, S. Roychoudhury, K. Koury, P. Li, W. V. Kalina,
D. Cooper, R. W. Frenck Jr., L. L. Hammitt, Ö. Türeci, H. Nell, A.
Schaefer, S. Ünal, D. B. Tresnan, S. Mather, P. R. Dormitzer, U. Şahin,
K. U. Jansen, W. C. Gruber; C4591001 Clinical Trial Group, Safety and
Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
3
L.
R. Baden, H. M. El Sahly, B. Essink, K. Kotloff, S. Frey, R. Novak, D.
Diemert, S. A. Spector, N. Rouphael, C. B. Creech, J. McGettigan, S.
Khetan, N. Segall, J. Solis, A. Brosz, C. Fierro, H. Schwartz, K.
Neuzil, L. Corey, P. Gilbert, H. Janes, D. Follmann, M. Marovich, J.
Mascola, L. Polakowski, J. Ledgerwood, B. S. Graham, H. Bennett, R.
Pajon, C. Knightly, B. Leav, W. Deng, H. Zhou, S. Han, M. Ivarsson, J.
Miller, T. Zaks, Efficacy and Safety of the mRNA-1273 SARS-CoV-2
Vaccine. N. Engl. J. Med. (2020).
4
S. Elbe, G. Buckland-Merrett, Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 1, 33–46 (2017).
5
T.
A. Bates, H. C. Leier, Z. L. Lyski, S. K. McBride, F. J. Coulter, J. B.
Weinstein, J. R. Goodman, Z. Lu, S. A. R. Siegel, P. Sullivan, M.
Strnad, A. E. Brunton, D. X. Lee, A. C. Adey, B. N. Bimber, B. J.
O’Roak, M. E. Curlin, W. B. Messer, F. G. Tafesse, Neutralization of
SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum. Nat. Commun. 12, 5135 (2021).
6
R.
E. Chen, X. Zhang, J. B. Case, E. S. Winkler, Y. Liu, L. A. VanBlargan,
J. Liu, J. M. Errico, X. Xie, N. Suryadevara, P. Gilchuk, S. J. Zost,
S. Tahan, L. Droit, J. S. Turner, W. Kim, A. J. Schmitz, M. Thapa, D.
Wang, A. C. M. Boon, R. M. Presti, J. A. O’Halloran, A. H. J. Kim, P.
Deepak, D. Pinto, D. H. Fremont, J. E. Crowe Jr., D. Corti, H. W.
Virgin, A. H. Ellebedy, P.-Y. Shi, M. S. Diamond, Resistance of
SARS-CoV-2 variants to neutralization by monoclonal and serum-derived
polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
7
J.
Lopez Bernal, N. Andrews, C. Gower, E. Gallagher, R. Simmons, S.
Thelwall, J. Stowe, E. Tessier, N. Groves, G. Dabrera, R. Myers, C. N.
J. Campbell, G. Amirthalingam, M. Edmunds, M. Zambon, K. E. Brown, S.
Hopkins, M. Chand, M. Ramsay, Effectiveness of Covid-19 Vaccines against
the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 385, 585–594 (2021).
8
E.
G. Levin, Y. Lustig, C. Cohen, R. Fluss, V. Indenbaum, S. Amit, R.
Doolman, K. Asraf, E. Mendelson, A. Ziv, C. Rubin, L. Freedman, Y.
Kreiss, G. Regev-Yochay, Waning Immune Humoral Response to BNT162b2
Covid-19 Vaccine over 6 Months. N. Engl. J. Med. 385, e84 (2021).
9
S.
J. Thomas, E. D. Moreira Jr., N. Kitchin, J. Absalon, A. Gurtman, S.
Lockhart, J. L. Perez, G. Pérez Marc, F. P. Polack, C. Zerbini, R.
Bailey, K. A. Swanson, X. Xu, S. Roychoudhury, K. Koury, S. Bouguermouh,
W. V. Kalina, D. Cooper, R. W. Frenck Jr., L. L. Hammitt, Ö. Türeci, H.
Nell, A. Schaefer, S. Ünal, Q. Yang, P. Liberator, D. B. Tresnan, S.
Mather, P. R. Dormitzer, U. Şahin, W. C. Gruber, K. U. Jansen, W. C.
Gruber, K. U. Jansen; C4591001 Clinical Trial Group, Safety and Efficacy
of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N. Engl. J. Med. 385, 1761–1773 (2021).
10
Y.
Goldberg, M. Mandel, Y. M. Bar-On, O. Bodenheimer, L. Freedman, S.
Alroy-Preis, N. Ash, A. Huppert, R. Milo, Protection and waning of
natural and hybrid COVID-19 immunity Medrxiv 2021.12.04.21267114 (2021).
11
S.
Nanduri, T. Pilishvili, G. Derado, M. M. Soe, P. Dollard, H. Wu, Q. Li,
S. Bagchi, H. Dubendris, R. Link-Gelles, J. A. Jernigan, D. Budnitz, J.
Bell, A. Benin, N. Shang, J. R. Edwards, J. R. Verani, S. J. Schrag,
Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing
SARS-CoV-2 Infection Among Nursing Home Residents Before and During
Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant -
National Healthcare Safety Network, March 1-August 1, 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 1163–1166 (2021).
12
S.
Y. Tartof, J. M. Slezak, H. Fischer, V. Hong, B. K. Ackerson, O. N.
Ranasinghe, T. B. Frankland, O. A. Ogun, J. M. Zamparo, S. Gray, S. R.
Valluri, K. Pan, F. J. Angulo, L. Jodar, J. M. McLaughlin, Effectiveness
of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated
health system in the USA: A retrospective cohort study. Lancet 398, 1407–1416 (2021).
13
Y.
M. Bar-On, Y. Goldberg, M. Mandel, O. Bodenheimer, L. Freedman, N.
Kalkstein, B. Mizrahi, S. Alroy-Preis, N. Ash, R. Milo, A. Huppert,
Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. N. Engl. J. Med. 385, 1393–1400 (2021).
14
Z.
Wang, F. Muecksch, D. Schaefer-Babajew, S. Finkin, C. Viant, C.
Gaebler, H.-H. Hoffmann, C. O. Barnes, M. Cipolla, V. Ramos, T. Y.
Oliveira, A. Cho, F. Schmidt, J. Da Silva, E. Bednarski, L. Aguado, J.
Yee, M. Daga, M. Turroja, K. G. Millard, M. Jankovic, A. Gazumyan, Z.
Zhao, C. M. Rice, P. D. Bieniasz, M. Caskey, T. Hatziioannou, M. C.
Nussenzweig, Naturally enhanced neutralizing breadth against SARS-CoV-2
one year after infection. Nature 595, 426–431 (2021).
15
J.
S. Turner, J. A. O’Halloran, E. Kalaidina, W. Kim, A. J. Schmitz, J. Q.
Zhou, T. Lei, M. Thapa, R. E. Chen, J. B. Case, F. Amanat, A. M.
Rauseo, A. Haile, X. Xie, M. K. Klebert, T. Suessen, W. D. Middleton,
P.-Y. Shi, F. Krammer, S. A. Teefey, M. S. Diamond, R. M. Presti, A. H.
Ellebedy, SARS-CoV-2 mRNA vaccines induce persistent human germinal
centre responses. Nature 596, 109–113 (2021).
16
M.
Bergwerk, T. Gonen, Y. Lustig, S. Amit, M. Lipsitch, C. Cohen, M.
Mandelboim, E. G. Levin, C. Rubin, V. Indenbaum, I. Tal, M. Zavitan, N.
Zuckerman, A. Bar-Chaim, Y. Kreiss, G. Regev-Yochay, Covid-19
Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 385, 1474–1484 (2021).
17
A.
M. Cavanaugh, K. B. Spicer, D. Thoroughman, C. Glick, K. Winter,
Reduced Risk of Reinfection with SARS-CoV-2 After COVID-19 Vaccination -
Kentucky, May-June 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 1081–1083 (2021).
18
W.
F. Garcia-Beltran, E. C. Lam, M. G. Astudillo, D. Yang, T. E. Miller,
J. Feldman, B. M. Hauser, T. M. Caradonna, K. L. Clayton, A. D. Nitido,
M. R. Murali, G. Alter, R. C. Charles, A. Dighe, J. A. Branda, J. K.
Lennerz, D. Lingwood, A. G. Schmidt, A. J. Iafrate, A. B. Balazs,
COVID-19-neutralizing antibodies predict disease severity and survival. Cell 184, 476–488.e11 (2021).
19
A.
A. Butt, P. Yan, O. S. Shaikh, F. B. Mayr, Outcomes among patients with
breakthrough SARS-CoV-2 infection after vaccination in a high-risk
national population. EClinicalMedicine 40, 101117 (2021).
20
T.
A. Bates, H. C. Leier, Z. L. Lyski, J. R. Goodman, M. E. Curlin, W. B.
Messer, F. G. Tafesse, Age-Dependent Neutralization of SARS-CoV-2 and
P.1 Variant by Vaccine Immune Serum Samples. JAMA 326, 868 (2021).
21
H.
S. Yang, V. Costa, S. E. Racine-Brzostek, K. P. Acker, J. Yee, Z. Chen,
M. Karbaschi, R. Zuk, S. Rand, A. Sukhu, P. J. Klasse, M. M. Cushing,
A. Chadburn, Z. Zhao, Association of Age With SARS-CoV-2 Antibody
Response. JAMA Netw. Open 4, e214302 (2021).
22
Z.
L. Lyski, A. E. Brunton, M. I. Strnad, P. E. Sullivan, S. A. R. Siegel,
F. G. Tafesse, M. K. Slifka, W. B. Messer, SARS-CoV-2 specific memory
B-cells from individuals with diverse disease severities recognize
SARS-CoV-2 variants of concern. J. Infect. Dis. jiab585 (2021).
23
A.
R. Falsey, R. W. Frenck Jr., E. E. Walsh, N. Kitchin, J. Absalon, A.
Gurtman, S. Lockhart, R. Bailey, K. A. Swanson, X. Xu, K. Koury, W.
Kalina, D. Cooper, J. Zou, X. Xie, H. Xia, Ö. Türeci, E. Lagkadinou, K.
R. Tompkins, P.-Y. Shi, K. U. Jansen, U. Şahin, P. R. Dormitzer, W. C.
Gruber, SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3. N. Engl. J. Med. 385, 1627–1629 (2021).
24
C.
Rydyznski Moderbacher, S. I. Ramirez, J. M. Dan, A. Grifoni, K. M.
Hastie, D. Weiskopf, S. Belanger, R. K. Abbott, C. Kim, J. Choi, Y.
Kato, E. G. Crotty, C. Kim, S. A. Rawlings, J. Mateus, L. P. V. Tse, A.
Frazier, R. Baric, B. Peters, J. Greenbaum, E. Ollmann Saphire, D. M.
Smith, A. Sette, S. Crotty, Antigen-Specific Adaptive Immunity to
SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease
Severity. Cell 183, 996–1012.e19 (2020).
25
R.
Keeton, S. I. Richardson, T. Moyo-Gwete, T. Hermanus, M. B. Tincho, N.
Benede, N. P. Manamela, R. Baguma, Z. Makhado, A. Ngomti, T. Motlou, M.
Mennen, L. Chinhoyi, S. Skelem, H. Maboreke, D. Doolabh, A. Iranzadeh,
A. D. Otter, T. Brooks, M. Noursadeghi, J. C. Moon, A. Grifoni, D.
Weiskopf, A. Sette, J. Blackburn, N.-Y. Hsiao, C. Williamson, C. Riou,
A. Goga, N. Garrett, L.-G. Bekker, G. Gray, N. A. B. Ntusi, P. L. Moore,
W. A. Burgers, Prior infection with SARS-CoV-2 boosts and broadens
Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host Microbe 29, 1611–1619.e5 (2021).
26
H.
C. Leier, T. A. Bates, Z. L. Lyski, S. K. McBride, D. X. Lee, F. J.
Coulter, J. R. Goodman, Z. Lu, M. E. Curlin, W. B. Messer, F. G.
Tafesse, Previously infected vaccinees broadly neutralize SARS-CoV-2
variants. medRxiv. 2021.04.25.21256049 (2021).
27
L.
C. Katzelnick, A. Coello Escoto, B. D. McElvany, C. Chávez, H. Salje,
W. Luo, I. Rodriguez-Barraquer, R. Jarman, A. P. Durbin, S. A. Diehl, D.
J. Smith, S. S. Whitehead, D. A. T. Cummings, Viridot: An automated
virus plaque (immunofocus) counter for the measurement of serological
neutralizing responses with application to dengue virus. PLOS Negl. Trop. Dis. 12, e0006862 (2018).
28
M.
E. Ackerman, B. Moldt, R. T. Wyatt, A.-S. Dugast, E. McAndrew, S.
Tsoukas, S. Jost, C. T. Berger, G. Sciaranghella, Q. Liu, D. J. Irvine,
D. R. Burton, G. Alter, A robust, high-throughput assay to determine the
phagocytic activity of clinical antibody samples. J. Immunol. Methods 366, 8–19 (2011).
La Comisión de Salud Pública matiza el tema de las terceras dosis tras infección:
"El intervalo entre la infección y la administración de la dosis de recuerdo será de un mínimo de 4 semanas, pero se recomienda su administración a los 5 meses tras el diagnóstico de la infección"
No hay comentarios:
Publicar un comentario