traductor

jueves, 30 de abril de 2020

Esto es lo que los virólogos sabemos hasta hoy sobre el coronavirus SARS-CoV-2

Esto es lo que los virólogos sabemos hasta hoy sobre el coronavirus SARS-CoV-2

Para Peter Medawar, premio Nobel de Medicina en 1960, los virus eran un conjunto de “malas noticias envueltas en proteína”. Aunque no responde a ningún criterio científico, esta definición refleja perfectamente la percepción que tenemos de la pandemia del coronavirus SARS-CoV-2 en estos días de confinamiento.
Las “malas noticias” en un virus pueden venir escritas en dos “alfabetos” ligeramente distintos, según su genoma sea de ADN o ARN. Los coronavirus (familia Coronaviridae) constituyen uno de los grupos de virus con el genoma de ARN más largo que se conoce. La información que contiene puede servir para sintetizar al menos 16 proteínas.
Las más esenciales son las que le permiten hacer copias de su propio genoma, las que protegen su ARN y las que le permiten entrar en la célula que va a infectar. Esta última es una proteína que contiene azúcares en su esqueleto y que se proyecta a modo de espículas (proteína S, de spike en inglés) desde la envuelta hacia el exterior. Al microscopio electrónico crean una imagen que recuerda a una corona, de ahí el nombre del virus.
La fidelidad de copia de las moléculas de ARN viral es siempre mucho menor que las de ADN, por lo que los virus de ARN tienden a acumular más mutaciones y adaptarse a nuevos huéspedes con más facilidad que los que poseen un genoma de ADN. Dentro de los virus con genoma de ARN, los coronavirus son una excepción: poseen un sistema de corrección de copia que hace que muestren una menor variabilidad.
Microfotografía de transmisión de partículas del virus del SARS-CoV-2, aislada de un paciente. NIAID, CC BY-SA
La secuenciación de más 11 000 genomas del SARS-CoV-2 ha puesto de manifiesto que tiene un ritmo de mutación 1 000 veces más lento que el de la gripe o el VIH. Por otro lado, los virus con genoma de ADN son generalmente más difíciles de eliminar porque algunos de ellos pueden producir infecciones latentes o incluso integrarse en el genoma del huésped (esto último también ocurre con los virus de ARN de la familia de los retrovirus).
Los coronavirus humanos se conocen desde hace muchos años y la mayoría de ellos están relacionados con resfriados o afecciones respiratorias leves. En el año 2002 apareció en China el primero letal para los humanos, el SARS-CoV (nombre que proviene de “síndrome respiratorio agudo severo”), que infectó a alrededor de 8 000 personas causando la muerte de 800, lo que supone una tasa de mortalidad del 10 %.
Desapareció en la primavera de 2004 y desde entonces no ha causado más problemas.
El segundo, el MERS-CoV (nombrado por el “síndrome respiratorio de Oriente Medio”), apareció en Arabia Saudí en 2012 y causó aproximadamente el mismo número de muertes, aunque sólo infectó a 2 400 personas. Su tasa de mortalidad fue del 30 %, muy alta, pero lejos de la observada para el virus del Ébola (50 %) y el virus de la rabia (95 %).
Entre los miles de virus que se conocen, solo una pequeña proporción son patógenos en humanos. Las células no tienen una puerta disponible para la entrada de la mayoría de estos microorganismos.
Pero estos diminutos agentes infecciosos han evolucionado mediante altas tasas de mutación y recombinación para utilizar alguna proteína del hospedador como vía de entrada a la célula, donde podrán multiplicarse y perpetuarse: eso es a lo que toda entidad replicativa aspira, y los virus no pueden realizarlo por sí mismos fuera de las células a las que infectan.
Los coronavirus utilizan las proteínas S que forman esas espículas en su exterior para unirse a una proteína enzimática celular llamada ACE2. Este enzima está situado en la superficie de las células de las mucosas, pulmones, arterias, corazón, riñón e intestinos, y tiene la función de regular la presión sanguínea, pero el virus lo emplea como puerta de entrada al contexto celular.
Una vez dentro de su hospedador, el virus campa a sus anchas porque lleva consigo su propia replicasa que le permitirá hacer múltiples copias de su genoma (hasta 100 000 copias en cada célula) y porque el alfabeto de la información que lleva en su ARN es el mismo que utilizamos los humanos.
Los ribosomas celulares no son capaces de identificar ese ARN como extraño. Actúa como un caballo de Troya utilizando la maquinaria celular y traduce dicha información en proteínas del virus. Esto provoca una caída de las funciones esenciales de la célula.

Un origen animal desconocido

El SARS-CoV-2 es de origen animal, aunque en ninguna especie se ha encontrado un coronavirus idéntico o muy similar. Algunas especies de murciélagos y el pangolín malayo, usado como alimento y en medicina tradicional china, son reservorios de virus bastante parecidos, pero los murciélagos estaban hibernando en China en diciembre de 2019, cuando se detectaron los primeros casos en humanos.
Es necesario seguir investigando para identificar las especies animales involucradas en el origen de la pandemia de COVID-19. Los mercados de animales vivos, salvajes y domésticos, en China son muy frecuentes y forman parte de la tradicional cadena alimentaria del país.
Tras esta pandemia, el gobierno chino debería regularizarlos o prohibirlos. De hecho, la siguiente pandemia de virus quizá ya se esté comenzando a fraguar en esos mismos entornos.

Cómo detectar la COVID-19

El diagnóstico de la enfermedad COVID-19, causada por este coronavirus, se lleva a cabo detectando el ARN o los antígenos (proteínas) del virus SARS-CoV-2, o bien los anticuerpos desarrollados por el paciente tras ser infectado.
En el primer caso, las muestras que se utilizan son secreciones respiratorias que pueden contener el virus (exudado nasofaríngeo, exudado nasal, aspirado traqueo-bronquial, esputo), y en ellas se identifica la presencia del ARN viral (mediante su extracción y amplificación por PCR cuantitativa) o de determinados antígenos (empleando sistemas biosensores de distinto tipo).
Por su parte, los anticuerpos del paciente infectado se analizan en sangre, plasma o suero. La detección de anticuerpos frente a SARS-CoV-2 permite conocer qué pacientes están infectados (tras un “período de ventana” de entre 5 y 7 días desde la exposición al virus, que es lo empleado por el organismo en generar la respuesta inmune) y también quiénes han superado la infección incluso sin padecer síntomas.
El SARS-CoV-2 es particularmente contagioso.

Una tasa de letalidad sobreestimada

Los coronavirus se transmiten por aerosoles, donde pueden permanecer viables hasta tres horas, y son estables en diversas superficies: resisten cuatro horas sobre el cobre (monedas), un día entero en el cartón y de dos a tres días en el plástico o el acero inoxidable. El coeficiente de infección R₀ (número promedio de personas a las que cada infectado contagia) es de alrededor de 2,5 (similar a la gripe, pero mucho menos que la viruela o el sarampión, que presentan R₀ de 6 y 15 en promedio) según se ha publicado recientemente en la revista The Lancet, y por tanto su progresión es necesariamente exponencial.
El otro aspecto numérico importante para la progresión de la pandemia es su tasa de letalidad. Para determinarlo de forma fidedigna se requiere realizar un muestreo amplísimo. Los cálculos actuales en base a los datos disponibles dan una tasa de letalidad de alrededor del 7 % de promedio (aunque varían mucho en las distintas franjas de edad: desde un 0,7 % para los menores de 30 años hasta un 20 % para los mayores de 80) en Italia y España.
Esta tasa promedio está sin duda sobrestimada. Tal y como dijo el matemático Andrejs Dunkels, “es fácil mentir con estadísticas” aunque en seguida añadió que “es difícil decir la verdad sin ellas”. Para un cálculo certero habría que conocer el número real de infectados, es decir, hacer los análisis a toda la cohorte (grupo que forma parte de un ensayo clínico, en este caso la totalidad de la población), lo cual es prácticamente irrealizable.
Pero si esa cohorte la tenemos confinada en un crucero, por ejemplo, estamos ante el experimento perfecto. Esto es lo que ocurrió en el Diamond Princess, el que tras un primer positivo se hicieron análisis a los 3 711 pasajeros, incluida la tripulación, y en algunos casos dos veces. Durante las siguientes 4 semanas se detectaron 711 positivos, un 18 % de los cuales fueron asintomáticos.

¿Un millón de infectados?

En un artículo publicado por investigadores del Centro de Modelado Matemático para Enfermedades Infecciosas de Londres, publicado en la revista Eurosurveillance se estimó una tasa de letalidad del 1,1 % en dicho crucero, mucho más baja que el 3,8 % estimado por la Organización Mundial de la Salud (OMS) a nivel global. Si los datos de dicho estudio son correctos y extrapolables, se podría estimar que en España el número de infectados sobrepasaría el millón de personas a día de hoy y esto aumentaría nuestras posibilidades de estar adquiriendo una inmunidad de rebaño que nos proteja para el futuro.
Los coronavirus tienen una membrana lipídica que confiere a la partícula una estabilidad relativamente baja, sobre todo si se la compara con la partícula desnuda del virus del resfriado común. Eso hace que sea relativamente fácil eliminarlos de las manos mediante soluciones jabonosas. Por lo tanto, la protección parece sencilla: distancia social (siguiendo el acertado hashtag #YoMeQuedoEnCasa) y correcta higiene de manos.
Según un estudio reciente del Imperial College de Londres, si no se hubieran tomado las medidas de confinamiento el número de fallecimientos podría haber llegado a los 40 millones de personas en todo el mundo. Pero las medidas preventivas duraderas requieren la elaboración de vacunas eficaces. España tiene una larga tradición de investigación en virología reconocida internacionalmente, esencialmente concentrada, pero no únicamente, en Madrid y Barcelona.
Nuestros compañeros del Centro Nacional de Biotecnología del CSIC, los Drs. Luis Enjuanes y Mariano Esteban, están trabajando activamente para desarrollar vacunas frente al SARS-CoV-2 con dos métodos basados en principios distintos. El equipo de Enjuanes pretende atenuar el virus eliminando los genes de virulencia del SARS-CoV-2, manteniendo los genes responsables de la defensa inmunitaria.
Por su parte, el grupo de Mariano Estebanutiliza vectores virales para expresar la proteína S del virus en la superficie del virus de la vacuna de la viruela, que abre la puerta celular, esperando que desencadene la respuesta inmune. Otras estrategias de laboratorios públicos y empresas de varios países centran su esfuerzo en el uso de fragmentos del ARN viral, ADN o proteínas para generar esta respuesta protectora en el organismo.
Pero en la situación actual, obviamente, más que métodos preventivos se necesitan urgentemente los curativos, basados en compuestos antivirales que puedan tratar la infección. En pacientes infectados se están probando, entre otros antivirales, la (hidroxi)cloroquina, que impediría la ruta de entrada del virus, el Remdesivir, que actuaría sobre la replicasa viral, y la asociación Ritonavir/Lopinavir que inhibiría la proteasa usada por el virus para expresar su información.
Otros fármacos que se están administrando a los enfermos tienen el fin de controlar o modular la respuesta exagerada de la defensa inmune frente al propio virus, incluyendo interferones, corticosteroides, anticuerpos monoclonales como Tocilizumab frente al receptor de la interleuquina IL-6, Eculizumab inhibidor de la activación del complemento, etc.

Seamos optimistas, pero pacientes

Existen varios ensayos clínicos en curso a nivel mundial (algunos de ellos con participación activa de hospitales de nuestro país), pero por el momento los resultados no son concluyentes y los casos de éxito se refieren a ensayos a pequeña escala, sin validez estadística.
Hemos de ser optimistas, pero pacientes. En estas circunstancias se trata de una investigación bajo una gran presión y basada casi exclusivamente en el concepto de prueba y error con compuestos farmacológicamente aprobados y en ocasiones usados anteriormente frente a otros virus.
En la fase actual de socialización del miedo, por otra parte comprensible, es importante estar bien informados y no contribuir a transmitir, a velocidades más rápidas que la del propio virus, informaciones total o parcialmente falsas. Las segundas hacen aún más daño, porque introducen datos erróneos, manipulados y tendenciosos en un contexto aparentemente bien argumentado.
Esta pandemia debe servirnos para que definitivamente los gobiernos mundiales (en especial el español) se den cuenta de la imperiosa necesidad de invertir en la generación de conocimiento, y que la inversión en Ciencia, Educación y Sanidad deben ser la base sobre la que se construye una sociedad justa, igualitaria y próspera.
No olvidemos que, según un estudio de investigadores de la Escuela de Salud Pública de Boston publicado recientemente en la revista Science, aún en el caso de la eliminación aparente de la pandemia en los próximos meses, las estimaciones para los períodos pospandemia prevén rebrotes ocasionales hasta 2024. No nos queda otra opción que estar preparados.

La farmacéutica Mª Dolores García y el médico Juan García Costa también ha colaborado en este artículo.

https://theconversation.com/esto-es-lo-que-los-virologos-sabemos-hasta-hoy-sobre-el-coronavirus-sars-cov-2-137274?fbclid=IwAR12JPVBY7PZxgtKbiblarwQ8fOIC6OMlIbezO49mjP97L6_I9w1D1gBlX8

miércoles, 29 de abril de 2020

El asesor principal de Alemania sobre el coronavirus: "Me temo que seremos testigos de una segunda ola de contagios"

El asesor principal de Alemania sobre el coronavirus: "Me temo que seremos testigos de una segunda ola de contagios"

El experto de cabecera de Angela Merkel habla de "la paradoja de la prevención" en una sociedad que necesita volver a la normalidad pero puede sufrir otra crisis si lo hace demasiado rápido


Christian Drosten, director de Virología del Hospital Charité en Berlín, experto en la investigación del virus del SARS en y asesor principal de Alemania sobre el coronavirus
Christian Drosten, director de Virología del Hospital Charité en Berlín, experto en la investigación del virus del SARS en y asesor principal de Alemania sobre el coronavirus Michael Kappeler/picture-alliance/dpa/AP Images
Christian Drosten, director de Virología del Hospital Charité en Berlín, fue uno de los investigadores que identificó el virus del SARS en 2003. Al frente del instituto de salud pública de referencia en Alemania para todo lo relacionado con los coronavirus, se ha convertido en el experto de cabecera del gobierno de Angela Merkel durante la pandemia.
En una entrevista exclusiva con The Guardian, Drosten admite que teme un segundo estallido mortal. Explica los motivos por los que Angela Merkel ha jugado con ventaja respecto a otros líderes mundiales y por qué "la paradoja de la prevención" no le deja dormir por las noches.
Alemania comienza a levantar el confinamiento de manera gradual desde este lunes. ¿Qué sucede a partir de ahí?
De momento vemos que las Unidades de Cuidados Intensivos están a mitad de capacidad en Alemania. Eso sucede porque comenzamos con los diagnósticos pronto y a gran escala y detuvimos la epidemia –lo que quiere decir que llevamos la tasa de reproducción a menos de 1 [reducir el número de personas que contagia cada infectado es una medida clave para detener el avance del virus].
Ahora nos encontramos en un escenario que denomino "la paradoja de la prevención". Hay personas que argumentan que reaccionamos de manera desproporcionada y hay presión política y económica para regresar a la normalidad. El plan federal es levantar el confinamiento de manera gradual, lentamente, pero como cada Länder [estado de la república federal] puede decidir y aplicar sus propias reglas, temo que seamos testigos de una gran creatividad en la aplicación de ese plan. Me temo que la tasa de reproducción aumentará de nuevo y seremos testigos de una segunda ola de contagios.
-
Si el confinamiento se prolongara en el tiempo, ¿podría erradicarse la enfermedad?
En Alemania hay un grupo de especialistas en modelos [de comportamiento a futuro] sugiriendo que una prolongación de algunas, pocas, semanas, podría suprimir en gran medida la circulación del virus y llevar la tasa de reproducción por debajo de 0,2. Tiendo a apoyar sus planteamientos pero aún no me he decidido del todo. La tasa de reproducción no es más que una media, una aproximación. No te dice dónde hay grupos de prevalencia alta como las residencias de ancianos en los que puede llevar más tiempo erradicar la enfermedad y desde donde podríamos ver resurgir la infección con velocidad incluso en un escenario de confinamiento extendido.
-
De surgir un nuevo brote, ¿podría contenerse?
Sí, pero no puede pasar si nos limitamos a trazar solamente el contacto entre humanos. Tenemos pruebas de que casi la mitad de los contagios sucede antes de que la persona que contagia desarrolle síntomas y las personas están infectadas un mínimo de dos días antes de desarrollarlos. Eso significa que los expertos en trazar contactos y que trabajen junto a los pacientes para identificar a aquellos con quienes han estado en contacto corren una carrera contra el tiempo. Necesitan ayuda para saber quienes son todos los potenciales contagiados lo antes posible y eso requerirá métodos de seguimiento electrónico de los contactos.
-
¿Cómo de cerca estamos de lograr la inmunidad colectiva?
Para lograr la inmunidad colectiva necesitamos que entre el 60% y el 70% de la población tenga anticuerpos del virus. El resultado de los exámenes de anticuerpos muestra que en Europa y Estados Unidos estamos por debajo del 10% pero las pruebas no son de total confianza. Todas presentan problemas y falsos positivos. La inmunidad colectiva no lo es todo. Asume que la población se mezcla pero tenemos motivos –relacionados con las redes generadas por la gente para relacionarse-para creer que no toda la población puede infectarse al mismo tiempo. Esas redes cambian continuamente y entonces se expone a otras personas al virus. Así podrían generarse olas de infección. Otro factor que podría tener causar un impacto en la inmunidad colectiva es saber si otros coronavirus –los del resfriado común, por ejemplo- ofrecen protección para este. No lo sabemos, es una posibilidad.
-
¿Deberían estar todos los países haciendo pruebas a todo el mundo?
No estoy seguro. Incluso en Alemania, con nuestra gran capacidad de hacer pruebas y con la mayor parte dirigidas a quienes presentan síntomas, no tenemos un tasa de positivos superior al 8%. Creo que es mejor hacer pruebas a una población concreta, a quienes son realmente vulnerables. Personal de hospitales y residencias de ancianos, por ejemplo. Eso no se está aplicando a rajatabla en Alemania pero avanzamos en esa dirección.
Otro objetivo deberían ser los pacientes en la primera semana que presentan síntomas, sobre todo los de más edad, que suelen venir al hospital cuando es demasiado tarde, cuando ya tienen los labios azules y necesitan intubación. Necesitamos algún sistema de vigilancia, un centinela que tome muestras entre la población con regularidad y pueda estar al tanto de la tasa de reproducción del virus.
-
¿Qué se sabe de la estacionalidad del virus?
No mucho. El grupo de modelización que lidera Marc Lipsitch en Harvard sugiere que la transmisión del virus podría ralentizarse durante el verano, pero que este efecto será mínimo. No tengo datos mejores.
-
¿Podemos afirmar a ciencia cierta que la pandemia se originó en China?
Creo que sí. Por otra parte, no asumo que comenzara en el mercado de alimentos de Wuhan. Es más probable que comenzara donde se criara otro animal, el anfitrión intermedio.
-
¿Qué sabemos sobre ese anfitirón intermedio, es el "pobre pangolín", como empieza a conocerse?
Nada me hace creer que el virus pasara a través del pangolín en su camino hacia el ser humano. Hay información interesante al respecto en la literatura sobre el SARS. El virus apareció en civetas pero también en mapaches, algo que la prensa pasó por alto. Los mapaches están en la base de una gran industria en China. Los crían en granjas y los cazan en la naturaleza. Por su piel. Si alguien me diera unos cientos de miles de dólares y acceso libre a China para encontrar el origen del virus, iría a mirar a los criaderos de mapaches.
-
¿Será útil identificar al paciente cero, el primer humano infectado con este virus?
No, el paciente cero es alguien que con casi total certeza se contagió con un virus muy similar a alguno de los primeros que secuenciamos, de modo que no nos ayudaría a resolver el problema que tenemos ahora. No creo que se pueda argumentar que nos ayudaría a prevenir futuras pandemias de coronavirus porque la humanidad será inmune al próximo coronavirus vinculado a SARS una vez ha estado expuesta a este. Otros coronavirus implicarán una amenaza -uno de los primeros candidatos es el MERS (Síndrome Respiratorio de Oriente Medio)- pero para entender esa amenaza tenemos que estudiar como avanzan esos virus en los camellos de Oriente Medio.
-
¿Es responsable la actividad humana del paso de virus de los animales al ser humano?
Los coronavirus tratan de cambiar de organismo de acogida cuando se presenta la oportunidad. A través de nuestro uso de los animales, contrario a los principios de la naturaleza, nosotros creamos esa oportunidad. Los animales de granja están en contacto con animales salvajes. El modo en que se los almacena en grandes grupos amplifica el contagio del virus entre ellos. El ser humano entra en intenso contacto con esos animales, por ejemplo, a través del consumo de carne. Eso representa una posible trayectoria de brotes de coronavirus. En Oriente Medio los camellos cuentan como animales de granja y son los animales que alojan el MERS y el coronavirus 229E que es una de las causas del resfriado común. Nuestro ganado es el huésped original del coronavirus OC43, por ejemplo.
-
Siempre se ha creído que la gripe común ofrece el mayor riesgo de pandemia. ¿Sigue siendo así?
Sin duda, pero no podemos descartar otra pandemia de coronavirus. Tras el primer estallido de Ébola en 1976 muchos creyeron que no volvería a suceder. Pero en menos de 20 años había pasado de nuevo.
-
¿Toda la ciencia desarrollada alrededor de esta coronavirus es correcta?
¡No! Al principio, en febrero, hubo muchos borradores interesantes. [Investigaciones que no han pasado por su revisión por pares]. Ahora, para encontrar uno bien fundamentado e interesante tienes que revisar 50. Se están malgastando muchos recursos de investigación.
-
Angela Merkel ha sido elogiada por su liderazgo durante esta crisis. ¿Qué es lo que hace de ella una buena lideresa?
Está muy bien informada. Ayuda que sea científica de formación y sepa manejar cifras. Pero creo que al final se reduce a su forma de ser y su capacidad de tomar decisiones bien fundamentadas y para transmitir seguridad. Quizás una de la características de una lideresa es que no utiliza esta situación para sacar provecho político. Saben lo contraproducente que puede ser.
-
¿Hay algo que no le deje dormir?
En Alemania, la gente ve que los hospitales no están desbordados y no entienden por qué las tiendas tienen que estar cerradas. Sólo ven lo que sucede así y no se fijan, por ejemplo, en lo que pasa en Nueva York o en España. Esa es la "paradoja de la prevención". Para muchos alemanes, soy el diablo que está hundiendo la economía. Recibo amenazas de muerte que paso a la Policía. Aunque me inquietan más otros emails, los de que gente que me dice que tiene tres hijos y les preocupa el futuro. No es culpa mía. Pero esos son los que no me dejan dormir de noche.
Traducido por Alberto Arce
https://www.eldiario.es/theguardian/Christian-Drosten-principal-coronavirus-hundiendo_0_1021548406.html
-

Calma en tiendas alemanas, avalancha en peluquerías danesas: los primeros signos de apertura se estrenan en Europa

Virological assessment of hospitalized patients with COVID-2019

Christian Drosten

 

https://notistecnicas.blogspot.com/2020/04/evaluacion-virologica-de-pacientes.html

 

 

martes, 28 de abril de 2020

¿Considerar que el origen de la manipulación genética del SARS-CoV-2 es una teoría conspirativa que debe ser censurada?

Is considering a genetic-manipulation origin for SARS-CoV-2 a conspiracy theory that must be censored?

https://www.researchgate.net/publication/340924249_Is_considering_a_genetic-manipulation_origin_for_SARS-CoV-2_a_conspiracy_theory_that_must_be_censored?fbclid=IwAR0x8AQ4xEmRdGr-Aw8m9Mx06Kn9LXTg8TZ8yOD0bvXJcwEbFUWK_6m37ms 

 
 Preprints and early-stage research may not have been peer reviewed yet.
 Como biólogo molecular con experiencia en manipulación genética (hongos), no excluyo un origen sintético para el SARS-CoV-2. En mi manuscrito no acuso a ninguna nación o grupo de investigación por la posible manipulación genética del virus. Hice una amplia investigación bibliográfica sobre el tema y sugiero un posible diseño experimental que podría haber originado el SARS-CoV-2, conocido por ser quimérico. Además, expreso un análisis crítico del artículo de Andersen y colegas recientemente publicado en Nature on the Proximal Origin of SARS-CoV-2.
 
As molecular biologist with expertise in genetical manipulation (fungi) I do not exclude a synthetic origin for SARS-CoV-2. In my manuscript I do not accuse any nation or research group for possible genetic manipulation of the virus. I did a wide literature research on the topic and I suggest a possible experimental design that could have originated SARS-CoV-2, known to be chimeric. Moreover, I express a critical analysis of the paper of Andersen and colleagues recently published in Nature on the Proximal Origin of SARS-CoV-2.
 
Abstract
The origin of SARS-CoV-2 is still controversial. Comparative genomic analyses have shown that SARS-CoV-2 is likely to be chimeric, most of its sequence being very close to the CoV detected from a bat,whereas its receptor binding domain is almost identical to that of CoV obtained from pangolins. Thefurin cleavage site in the spike protein of SARS-CoV-2 was previously not identified in other SARS-likeCoVs and might have conferred ability to cross species and tissue barriers. Chimeric viruses can bethe product of natural recombination or genetic manipulations. The latter could have aimed toidentify pangolins as possible intermediate hosts for bat-CoV potentially pathogenic for humans.
Theories that consider a possible artificial origin for SARS-CoV-2 are censored as they seem to
support conspiracy theories. Researchers have the responsibility to carry out a thorough analysis,
beyond any personal research interests, of all possible causes for SARS-CoV-2 emergence for
preventing this from happening in the future.
Several months have passed since the outbreak of SARS-CoV-2 in Wuhan, China, and its origin is stillcontroversial. The theory that the Wuhan’s Huanan Seafood Wholesale Market was the first sourcefor animal–human virus transmission has lost credibility. During the first phase of the epidemic inWuhan, several hospitalized patients with confirmed SARS-CoV-2 infections had no link with the
market.
 
The closest relatives to SARS-CoV-2 are bat and pangolin coronaviruses
Zhou and colleagues2 from the Wuhan Institute of Virology (WIV) first identified and characterized
the new coronavirus (CoV), recently named SARS-CoV-2. The genomic sequences obtained from earlycases shared 79% sequence identity to the CoVs that caused Severe Acute Respiratory Syndrome(SARS-CoV) in 2002-2003 and 96·2 % sequence identity to RaTG13, a total genomic sequence of aCoV detected from a Rhinolophus affinis bat. This sample was collected in the Yunnan province(China) by the same group of researchers in 2013. Zhou and colleagues2 found a short region of RNA-dependent RNA polymerase (RdRp) in their data and then fully sequenced the original sample. Thissequence is currently the closest phylogenetic relative for SARS-CoV-2 found3 and it has not beenpublished before the outbreak of SARS-CoV-2.
The RdRp of RaTG13 has 100 % identity with the sequence BtCoV/4991 (KP876546) identified by Geand colleagues4 in a Rhinolophus affinis bat in the Yunnan province in 2013 as RaTG13. Based on thephylogenetic analysis carried out by Ge and colleagues4, BtCoV/4991 is a novel beta-CoV, clearly
separated from all known alpha- and beta-CoVs at that time. Spike genes were amplified as well, and
made available upon request to Ge and colleagues.4 BtCoV/4991 clearly differentiates from other bat
CoVs also in the phylogenetic analysis carried out by Wang and colleagues.5 Chen and colleagues6
identified BtCoV/4991 as the closest sequence to SARS-CoV-2 because RaTG13 had not yet been
published at that time. How BtCoV/4991 and RaTG13 relate to each other remains unclear. 
-
The second non-human RdRp sequence closest to BtCoV/4991 (91·89%) is the CoV sequence MP789isolated in 2019 in a Malaysian pangolin (Manis javanica) in the Guangdong province, China
(MT084071).Bat CoVs have been studied intensely and genetically manipulated
Several studies point out that bats are reservoirs for a broad diversity of potentially pathogenic SARS-like CoV.4,7,8 Some of these viruses can directly infect humans9, whereas others need to mutate theirspike protein in order to effectively bind to the human angiotensin 1-converting enzyme 2 (hACE2)receptor and mediate virus entry.10 In order to evaluate the emergence potential of novel CoVs,receptor and mediate virus entry.10 In order to evaluate the emergence potential of novel CoVs,chimeric CoVs with Bat CoV backbones not able to infect human cells were fused to spike proteins ofCoVs compatible with human ACE2, simulating recombination events that occur naturally.7,11,12 These experiments with gain of function have raised biosafety concerns and controversy amongresearchers and the public
Key difference between SARS-CoV-2 and its closest relative RaTG13SARS-CoV-2 differs from its closest relative RaTG13 by few key characteristics. The most striking oneis the acquisition in the spike protein of SARS-CoV-2 of a cleavage site activated by the host-cellenzyme furin, previously not identified in other beta-CoVs of lineage b15 and similar to that of Middle
East Respiratory Syndrome Coronavirus (MERS-CoV).16 Host protease processing plays a pivotal roleas species and tissue barrier. Engineering of the cleavage sites of CoV spike proteins modifies virustropism and virulence.17 The ubiquitous expression of furin in different organs and tissues may have conferred to SARS-CoV-2 the ability to infect body parts insensitive to other CoVs, leading to
systematic infection in the body.18 Cell-cultured SARS-CoV-2 that was missing the above-mentioned
cleavage site caused attenuated symptoms in infected hamsters.19
Pangolin or not pangolin, that is the question
The possibility that pangolins could be the intermediate host for SARS-CoV-2 is still under
discussion.20,21 SARS-CoV-2 and RaTG13 mostly diverge because of the RBD of their spike protein.3
Although the average genome similarity is lower compared to RaTG13, CoV isolated from pangolins
has RBDs almost identical to that of SARS-CoV-2. Indeed, pangolin CoVs and SARS-CoV-2 possess
identical amino acids at the five critical residues of the RBD, whereas RaTG13 only shares one amino acid with SARS-CoV-2.16 ACE2 sequence similarity is higher between humans and pangolins thanbetween humans and bats. Before the SARS-CoV-2 outbreak, pangolins were the only mammals
other than bats documented to carry a SARS-CoV-2 related CoV.22 Recombination events between
the RBD of CoV from pangolins and RaTG13-like backbone could have originated SARS-CoV-2 as 
chimeric strain. For recombination to occur, the two viruses must have infected the same cell in the
same organism simultaneously.16
Is a lab origin for SARS-CoV-2 a baseless conspiracy theory?
Due to the broad-spectrum of research conducted over almost 20 years on bat SARS-CoV justified by
their potential to spill over from animal to human23, a possible synthetic origin by laboratory
engineering of SARS-CoV-2 is a reasonable hypothesis. Andersen and colleagues24 stated that strong
evidence that SARS-CoV-2 did not result from genetic manipulation is that the high-affinity binding ofthe SARS-CoV-2  spike protein to human ACE2 could not have been predicted by models based on theRBD of SARS-CoV. As described above, creation of chimeric viruses has been carried out over theyears with the purpose to study the potential pathogenicity of bat CoVs for humans. In this context,SARS-CoV-2 could have been synthetized by combining a backbone similar to RaTG13 with the RBD ofCoV similar to the one recently isolated from pangolins20, because the latter is characterized by ahigher affinity with the hACE2 receptor. Such research could have aimed to identify pangolins aspossible intermediate hosts for bat-CoV potentially pathogenic for humans
Regarding the furin cleavage site, Andersen and colleagues24 state that “The functional consequence
of the polybasic cleavage site in SARS-CoV-2 is unknown”. New studies from several groups have
lately identified this activation site as possibly enabling the virus to spread efficiently between
humans and attack multiple organs.25
Andersen and colleagues24 also state, based on the work of Almazan and colleagues26 that “the
genetic data irrefutably show that SARS-CoV-2 is not derived from any previously used virus
backbone”. In the last six years before the outbreak of SARS-CoV-2 the number of potential bat
backbones has been undeniably increased by several bat CoV screenings, last but not least bringing
RaTG13 to scientific attention in January 2020. Other possible backbones could, as well, still wait for
publicationndersen and colleagues24 also state that “The acquisition of both the polybasic cleavage site and predicted O-linked glycans also argues against culture-based scenarios”. Methods for insertion of apolybasic cleavage site in infectious bronchitis CoV are given in Cheng and colleagues27 and resultedin increased pathogenicity. The addition of O-linked glycans typically occurs under immune selectionand could have arisen during in vivo experiments. To overcome problems of bat CoV isolation,experiments based on direct inoculation of bat CoV in suckling rats have been carried out 28.
Pangolins or other animals with similar ACE2 conformation could have been used as experimental
animals as well. The authors also state that “Subsequent generation of a polybasic cleavage site
would have then required repeated passage in cell culture or animals with ACE2 receptors similar to
those of humans, but such work has also not previously been described.” It should not be excluded
that such experiments could have been aborted due to the SARS-CoV-2 outbreak, before a possible
publication of the results or that the results were never intended to be published. 
-
Conclusion
Due to the gravity of SARS-CoV-2 impact on humanity, researchers have the responsibility to carry
out a thorough analysis, beyond any personal research interests, of all possible causes for SARS-CoV-2 emergence. Unfortunately, theories that consider a possible artificial origin for SARS-CoV-2 arecensored by international scientific journals as they seem to support conspiracy theories. Genetic
manipulation of SARS-CoV-2 may have been carried out in any laboratory in the world with access tothe backbone sequence and the necessary equipment
Xiao Qiang, a research scientist at the School of Information at the University of California at
Berkeley, recently stated “To understand exactly how this virus has originated is critical knowledge
for preventing this from happening in the future” (Washington Post, April 14, 2020). 
 
Conclusion
 
 Debido a la gravedad del impacto del SARS-CoV-2 en la humanidad, los investigadores tienen la responsabilidad de llevar un análisis exhaustivo, más allá de cualquier interés personal de investigación, de todas las posibles causas de la aparición del SARS-CoV-2. Lamentablemente, las teorías que consideran un posible origen artificial del SARS-CoV-2 son censuradas por las revistas científicas internacionales ya que parecen apoyar las teorías de conspiración. Genética
La manipulación del SARS-CoV-2 puede haberse realizado en cualquier laboratorio del mundo con acceso a la secuencia de la columna vertebral y el equipo necesario
Xiao Qiang, un científico investigador de la Escuela de Información de la Universidad de California en Berkeley, recientemente declaró "Entender exactamente cómo se ha originado este virus es un conocimiento crítico para evitar que esto ocurra en el futuro" (Washington Post, 14 de abril de 2020).
 
 

 

 

domingo, 26 de abril de 2020

Coronavirus humano: Interacción huésped-patógeno

Human Coronavirus: Host-Pathogen Interaction

Annual Review of Microbiology
Vol. 73:529-557 (Volume publication date September 2019)
First published as a Review in Advance on June 21, 2019
https://doi.org/10.1146/annurev-micro-020518-115759

Abstract

Human coronavirus (HCoV) infection causes respiratory diseases with mild to severe outcomes. In the last 15 years, we have witnessed the emergence of two zoonotic, highly pathogenic HCoVs: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Replication of HCoV is regulated by a diversity of host factors and induces drastic alterations in cellular structure and physiology. Activation of critical signaling pathways during HCoV infection modulates the induction of antiviral immune response and contributes to the pathogenesis of HCoV. Recent studies have begun to reveal some fundamental aspects of the intricate HCoV-host interaction in mechanistic detail. In this review, we summarize the current knowledge of host factors co-opted and signaling pathways activated during HCoV infection, with an emphasis on HCoV-infection-induced stress response, autophagy, apoptosis, and innate immunity. The cross talk among these pathways, as well as the modulatory strategies utilized by HCoV, is also discussed.

Coronavirus humano: Interacción huésped-patógeno 
Extracto

La infección por el coronavirus humano (HCoV) causa enfermedades respiratorias con resultados de leves a severos. En los últimos 15 años, hemos sido testigos de la aparición de dos HCoV zoonóticos y altamente patógenos: el coronavirus del síndrome respiratorio agudo severo (SARS-CoV) y el coronavirus del síndrome respiratorio de Oriente Medio (MERS-CoV). La replicación del HCoV está regulada por una diversidad de factores del huésped e induce alteraciones drásticas en la estructura y fisiología celular. La activación de vías de señalización críticas durante la infección por HCoV modula la inducción de la respuesta inmunológica antiviral y contribuye a la patogénesis del HCoV. Estudios recientes han comenzado a revelar algunos aspectos fundamentales de la intrincada interacción entre el HCoV y el huésped en detalles mecánicos. En esta revisión, resumimos el conocimiento actual de los factores del huésped cooptados y las vías de señalización activadas durante la infección por HCoV, con énfasis en la respuesta al estrés inducido por la infección por HCoV, la autofagia, la apoptosis y la inmunidad innata. También se examina el cruce de estas vías, así como las estrategias moduladoras utilizadas por el HCoV.

 Conclusiones
Como parásitos intracelulares obligados y restringidos por sus limitadas capacidades genómicas, todos los virus han evolucionado para secuestrar los factores del huésped y facilitar su replicación. Mientras tanto, las células huéspedes también han desarrollado intrincadas redes de señalización para detectar, controlar y erradicar los virus intrusos, aunque estas vías antivirales suelen ser evadidas, inhibidas o subvertidas por diversos contramecanismos virales. La interacción entre virus y huéspedes representa, por lo tanto, una carrera armamentística evolutiva en curso que se ha perfeccionado a nivel molecular y celular. En este examen hemos resumido los progresos recientes en los estudios sobre la interacción entre el HCoV y el huésped, haciendo hincapié en los factores de huésped cooptado y las vías de señalización críticas. Evidentemente, cada paso del ciclo de replicación del HCoV involucra ciertos factores del huésped, y las dramáticas alteraciones en la estructura y fisiología celular activan la respuesta de estrés del huésped, la autofagia, la apoptosis y la inmunidad innata. Con los recientes avances en el análisis multiómico y la edición del genoma (como el CRISPR), es muy probable que en el futuro se descubran y caractericen cada vez más factores del huésped y vías implicadas en la infección por HCoV. Estos estudios, complementados con los diversos modelos animales de HCoV bien establecidos y los sistemas de genética inversa, es de esperar que desentrañen mecanismos anteriormente desconocidos que subyacen a la biología molecular del HCoV y cómo interactúan con el huésped.

Desde una perspectiva práctica, el estudio de la interacción entre el HCoV y el huésped también es fundamental ante la posible aparición y/o resurgimiento futuro del HCoV altamente patógeno. En los últimos 15 años, hemos sido testigos de brotes de dos HCoV zoonóticos y altamente patógenos. Los graves síntomas observados en los pacientes con SARS y MERS son, en efecto, en gran parte debidos a las inmunopatías, debido a la activación aberrante del sistema inmunológico. En cambio, otros HCoV leves causan infecciones autolimitadas del tracto respiratorio superior, que sólo en raras ocasiones se convierten en enfermedades que ponen en peligro la vida de los individuos inmunocomprometidos. ¿Cómo pueden estos virus relacionados manifestarse de forma tan diferente en términos de patogénesis? Hasta cierto punto, esto puede explicarse por los diferentes patrones de interacción de la HCoV con las células huésped. Un ejemplo es que los HCoV leves suelen inducir un alto nivel de producción de IFN-I, mientras que se sabe que el SARS-CoV y el MERS-CoV antagonizan la inducción y la señalización de interferón mediante numerosos mecanismos. Una mejor comprensión de la interacción entre el HCoV y el huésped permitirá determinar con precisión los factores virales y de huésped críticos que controlan la patogénesis del HCoV y desarrollar enfoques terapéuticos más eficaces contra la infección por el HCoV. Por ejemplo, es menos probable que los medicamentos dirigidos a los factores esenciales del huésped se seleccionen para las variantes del HCoV resistentes a los medicamentos. Además, aunque la respuesta inmunológica hiperactiva debe suprimirse en las enfermedades graves causadas por el HCoV, el aumento de la activación del sistema inmunológico sería beneficioso durante la administración de la vacuna. Por último, los hallazgos sobre la interacción entre el HCoV y el huésped también pueden extrapolarse a otros coronavirus animales y zoonóticos, lo que arrojará nueva luz sobre la prevención y el control de estos patógenos de importancia económica y veterinaria, así como sobre la aparición de nuevos patógenos coronavirales zoonóticos.

INTRODUCTION

Coronaviruses are a group of enveloped viruses with nonsegmented, single-stranded, and positive-sense RNA genomes. Apart from infecting a variety of economically important vertebrates (such as pigs and chickens), six coronaviruses have been known to infect human hosts and cause respiratory diseases. Among them, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic and highly pathogenic coronaviruses that have resulted in regional and global outbreaks.
-
Los coronavirus son un grupo de virus envueltos con genomas de ARN no segmentados, de una sola cadena y de sentido positivo. Además de infectar a diversos vertebrados económicamente importantes (como cerdos y pollos), se sabe que seis coronavirus infectan a huéspedes humanos y causan enfermedades respiratorias. Entre ellos, el coronavirus del síndrome respiratorio agudo severo (SARS-CoV) y el coronavirus del síndrome respiratorio del Oriente Medio (MERS-CoV) son coronavirus zoonóticos y altamente patógenos que han dado lugar a brotes regionales y mundiales
-
According to the International Committee on Taxonomy of Viruses, coronaviruses are classified under the order Nidovirales, family Coronaviridae, subfamily Coronavirinae. Based on early serological and later genomic evidence, Coronavirinae is divided into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus (126). Four distinct lineages (A, B, C, and D) have been assigned within the genus Betacoronavirus. Among the six known human coronaviruses (HCoVs), HCoV-229E and HCoV-NL63 belong to Alphacoronavirus, whereas HCoV-OC43 and HCoV-HKU1 belong to lineage A, SARS-CoV to lineage B, and MERS-CoV to lineage C Betacoronavirus (Figure 1).
In November 2002, a viral respiratory disease first appeared in southern China and quickly spread to other countries, leading to over 8,000 confirmed cases at the end of the epidemic in June 2003, with a mortality rate of ∼9.6% (98). The etiologic agent was identified as SARS-CoV, a zoonotic betacoronavirus originated in horseshoe bats that later adapted to infect the intermediate host palm civet and ultimately humans (64). After an incubation period of 4–6 days, SARS patients develop flu-like symptoms and pneumonia, which in severe cases lead to fatal respiratory failure and acute respiratory distress syndrome (96). Although SARS-CoV infects multiple organs and causes systemic disease, symptoms indeed worsen as the virus is cleared, suggesting that aberrant immune response may underlie the pathogenesis of SARS-CoV (98). While no cases of SARS have been reported since 2004, a rich gene pool of bat SARS-related coronaviruses was discovered in a cave in Yunnan, China, highlighting the necessity to prepare for future reemergence (50).
In June 2012, MERS-CoV emerged in Saudi Arabia as the causative agent of a SARS-like respiratory disease (25). Although human-to-human transmission is considered limited, MERS-CoV has caused two major outbreaks in Saudi Arabia (2012) and South Korea (2015), with the global confirmed cases exceeding 2,000 and a mortality rate of ∼35% (10). Elderly people infected with MERS-CoV, particularly those with comorbidities, usually develop more severe and sometimes fatal disease (42). Similar to SARS-CoV, MERS-CoV originated in bats, but it later adapted to dromedary camels as intermediate hosts (17). Currently, no vaccine or specific antiviral drug has been approved for either SARS-CoV or MERS-CoV.
Prior to the emergence of SARS-CoV, only two HCoVs (HCoV-229E and HCoV-OC43) were known, both causing mild upper respiratory symptoms when inoculated to healthy adult volunteers (45). Two more HCoVs, HCoV-NL63 and HCoV-HKU1, were identified in 2004 and 2005, respectively (31, 127). Together, these four globally distributed HCoVs presumably contribute to 15–30% of cases of common cold in humans (69). Although diseases are generally self-limiting, these mild HCoVs can sometimes cause severe lower respiratory infections in infants, elderly people, or immunocompromised patients (41, 97). Similar to SARS-CoV and MERS-CoV, HCoV-NL63 and HCoV-229E originated in bats, whereas HCoV-OC43 and HCoV-HKU1 likely originated in rodents (22). Importantly, a majority of alphacoronaviruses and betacoronaviruses were identified only in bats, and many coronaviruses phylogenetically related to SARS-CoV and MERS-CoV were discovered in diverse bat species (22). Therefore, emerging zoonotic HCoVs such as SARS-CoV and MERS-CoV likely originated in bats through sequential mutation and recombination of bat coronaviruses, underwent further mutations during the spillover to intermediate hosts, and finally acquired the ability to infect human hosts (22).
In this review, we first revisit the replication cycle of HCoV, with a particular focus on the host factors co-opted during individual stages of HCoV replication. Next, we summarize the current knowledge of important signaling pathways activated during HCoV infection, including stress response, autophagy, apoptosis, and innate immunity. The cross talk among these pathways and the modulatory strategies utilized by HCoV are also discussed.

HCoV REPLICATION AND THE INVOLVEMENT OF HOST FACTORS

Morphology and Genomic Structure of HCoV

Coronaviruses are spherical or pleomorphic, with a diameter of 80–120 nm. Under the electron microscope, the virion surface is decorated with club-like projections constituted by the trimeric spike (S) glycoprotein (79). Shorter projections made up of the dimeric hemagglutinin-esterase (HE) protein are observed in some betacoronaviruses (such as HCoV-OC43 and HCoV-HKU1) (24). Both S and HE are type I transmembrane proteins with a large ectodomain and a short endodomain. The viral envelope is supported by the membrane (M) glycoprotein, the most abundant structural protein that embeds in the envelope via three transmembrane domains (79). Additionally, a small transmembrane protein known as the envelope (E) protein is also present in a low amount in the envelope (71). Finally, the nucleocapsid (N) protein binds to the RNA genome in a beads-on-a-string fashion, forming the helically symmetric nucleocapsid (79).
The coronavirus genome is a positive-sense, nonsegmented, single-stranded RNA, with an astoundingly large size ranging from 27 to 32 kilobases. The genomic RNA is 5′-capped and 3′-polyadenylated and contains multiple open reading frames (ORFs). The invariant gene order is 5′-replicase-S-E-M-N-3′, with numerous small ORFs (encoding accessory proteins) scattered among the structural genes (Figure 2). The coronavirus replicase is encoded by two large overlapping ORFs (ORF1a and ORF1b) occupying about two-thirds of the genome and is directly translated from the genomic RNA. The structural and accessory genes, however, are translated from subgenomic RNAs (sgRNAs) generated during genome transcription/replication as described below.
The coronavirus replication cycle is divided into several steps: attachment and entry, translation of viral replicase, genome transcription and replication, translation of structural proteins, and virion assembly and release (Figure 3). In this section, we briefly review each step and summarize host factors involved in coronavirus replication (Table 1).

Attachment and Entry

Coronavirus replication is initiated by the binding of S protein to the cell surface receptor(s). The S protein is composed of two functional subunits, S1 (bulb) for receptor binding and S2 (stalk) for membrane fusion. Specific interaction between S1 and the cognate receptor triggers a drastic conformational change in the S2 subunit, leading to the fusion between the virus envelope and the cellular membrane and release of the nucleocapsid into the cytoplasm (79). Receptor binding is the major determinant of host range and tissue tropism for a coronavirus. Some HCoVs have adopted cell surface enzymes as receptors, such as aminopeptidase N (APN) for HCoV-229E, angiotensin converting enzyme 2 (ACE2) for HCoV-NL63 and SARS-CoV, and dipeptidyl peptidase 4 (DPP4) for MERS-CoV, while HCoV-OC43 and HCoV-HKU1 use 9-O-acetylated sialic acid as a receptor (69).
The S1/S2 cleavage of coronavirus S protein is mediated by one or more host proteases. For instance, activation of SARS-CoV S protein requires sequential cleavage by the endosomal cysteine protease cathepsin L (7, 105) and another trypsin-like serine protease (4). On the other hand, the S protein of MERS-CoV contains two cleavage sites for a ubiquitously expressed protease called furin (84). Interestingly, whereas the S1/S2 site was cleaved during the synthesis of MERS-CoV S protein, the other site (S2′) was cleaved during viral entry (84). A similar cleavage event was also observed in infectious bronchitis virus (IBV), a prototypic gammacoronavirus that infects chickens, in an earlier study (132). Additionally, type II transmembrane serine proteases TMPRSS2 and TMPRSS11D have also been implicated in the activation of S protein of SARS-CoV (6) and HCoV-229E (5). Apart from S activation, host factors might also be involved in subsequent stages of virus entry. For example, valosin-containing protein (VCP) contributed to the release of coronavirus from early endosomes, as knockdown of VCP led to decreased replication of both HCoV-229E and IBV (125).
Host factors could also restrict the attachment and entry of HCoV. For example, interferon-inducible transmembrane proteins (IFITMs) exhibited broad-spectrum antiviral functions against various RNA viruses (2). The entry of SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63 was restricted by IFITMs (51). In sharp contrast, however, HCoV-OC43 used IFITM2 or IFITM3 as an entry factor to facilitate its infection (144). A recent study identified several amino acid residues in IFITMs that control the restriction versus enhancing activities on HCoV entry (145).

Translation of Replicase and Assembly of the Replication Transcription Complex

After entry and uncoating, the genomic RNA serves as a transcript to allow cap-dependent translation of ORF1a to produce polyprotein pp1a. Additionally, a slippery sequence and an RNA pseudoknot near the end of ORF1a enable 25–30% of the ribosomes to undergo −1 frameshifting, thereby continuing translation on ORF1b to produce a longer polyprotein pp1ab (79). The autoproteolytic cleavage of pp1a and pp1ab generates 15–16 nonstructural proteins (nsps) with various functions. Importantly, the RNA-dependent RNA polymerase (RdRP) activity is encoded in nsp12 (130), whereas papain-like protease (PLPro) and main protease (Mpro) activities are encoded in nsp3 and nsp5, respectively (149). nsp3, 4, and 6 also induce rearrangement of the cellular membrane to form double-membrane vesicles (DMVs) or spherules (1, 77), where the coronavirus replication transcription complex (RTC) is assembled and anchored.
image
CLICK TO VIEW
Table 1
Host factors involved in HCoV replication
Apart from the RNA secondary structures, programmed ribosomal frameshifting (PRF) might also be regulated by viral and/or host factors. For example, PRF in the related arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) was transactivated by the viral protein nsp1β, which interacts with the PRF signal via a putative RNA-binding motif (65). A host RNA-binding protein called annexin A2 (ANXA2) was also shown to bind the pseudoknot structure in the IBV genome (62).
In terms of DMV formation and RTC assembly, host factors in the early secretory pathway seemed to be involved. Golgi-specific brefeldin A–resistance guanine nucleotide exchange factor 1 (GBF1) and its effector ADP ribosylation factor 1 (ARF1) are both required for normal DMV formation and efficient RNA replication of mouse hepatitis virus (MHV), a prototypic betacoronavirus that infects mice (119).

Genome Replication and Transcription

Using the genomic RNA as a template, the coronavirus replicase synthesizes full-length negative-sense antigenome, which in turn serves as a template for the synthesis of new genomic RNA (79). The polymerase can also switch template during discontinuous transcription of the genome at specific sites called transcription-regulated sequences, thereby producing a 5′-nested set of negative-sense sgRNAs, which are used as templates for the synthesis of a 3′-nested set of positive-sense sgRNAs (79).
Although genome replication/transcription is mainly mediated by the viral replicase and confines in the RTC, the involvement of various host factors has been implicated. For instance, coronavirus N protein is known to serve as an RNA chaperone and facilitate template switching (150, 151). Importantly, the N protein of SARS-CoV and MHV-JHM was also phosphorylated by glycogen synthase kinase 3 (GSK3), and inhibition of GSK3 was shown to inhibit viral replication in Vero E6 cells infected with SARS-CoV (129). Additionally, GSK3-mediated phosphorylation of the MHV-JHM N protein recruited an RNA-binding protein DEAD-box helicase 1 (DDX1), which facilitates template read-through, favoring the synthesis of genomic RNA and longer sgRNAs (128). Another RNA-binding protein called heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) can also bind tightly to SARS-CoV N protein and potentially regulate viral RNA synthesis (74).
Host RNA-binding proteins could also bind directly to untranslated regions (UTRs) of the coronavirus genome to modulate replication/transcription, such as zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1) binding to the 5′-UTR of IBV (111), mitochondrial aconitase binding to the 3′-UTR of MHV (90), and poly(A)-binding protein (PABP) to the poly(A) tail of bovine coronavirus (108).

Translation of Structural Proteins

Most of the coronavirus sgRNAs are functionally monocistronic, and thus only the 5′-most ORF is translated in a cap-dependent manner (79). However, some sgRNAs can also employ other mechanisms, such as ribosome leaky scanning and ribosome internal entry, to translate additional ORFs (71). Transmembrane structural proteins (S, HE, M, and E) and some membrane-associated accessory proteins are translated in the ER, whereas the N protein is translated by cytosolic free ribosomes (79). Recent studies using ribosome profiling have identified ribosome pause sites and revealed several short ORFs upstream of, or embedded within, known viral protein-encoding regions (52).
Most coronavirus structural proteins are subjected to posttranslational modifications that modulate their functions (40). For example, both S and M proteins were modified by glycosylation (147). Although N-linked glycosylation of SARS-CoV S protein does not contribute to receptor binding (109), it might be involved in lectin-mediated virion attachment (46) and might constitute some neutralizing epitopes (107). Also, O-linked glycosylation of M protein affects the ability of MHV to induce type I interferon and its replication in mice (26). Proper folding and maturation of viral transmembrane proteins (in particular S) also rely heavily on ER protein chaperones such as calnexin (33).

Virion Assembly and Release

Particle assembly occurs in the ER-Golgi intermediate compartment (ERGIC) and is orchestrated by the M protein (57, 79). Homotypic interaction of M protein provides the scaffold for virion morphogenesis, whereas M-S and M-N interactions facilitate the recruitment of structural components to the assembly site (48). The E protein also contributes to particle assembly by interacting with M and inducing membrane curvature (68). Finally, coronavirus particles budded into the ERGIC are transported in smooth-wall vesicles and trafficked via the secretory pathway for release by exocytosis.
Various host factors have been implicated in the assembly and release of coronavirus. In particular, interactions between the cytoskeleton and structural proteins seem to be essential. Interactions between tubulins and the cytosolic domain of S protein of HCoV-229E, HCoV-NL63, and TGEV are required for successful assembly and release of infectious viral particles (103). Similarly, interactions between IBV M protein and β-actin, between TGEV N protein and vimentin (an intermediate filament protein), and between TGEV S protein and filamin A (an actin-binding protein) have been shown to facilitate coronavirus particle assembly and/or release (121, 143).

ACTIVATION OF AUTOPHAGY DURING HCoV INFECTION

Macroautophagy (hereafter referred to as autophagy) is a conserved cellular process involving self (auto) eating (phagy). Specifically, cells under stress conditions (such as starvation, growth factor deprivation, or infection by pathogens) initiate autophagy in nucleation sites at the ER, where part of the cytoplasm and/or organelles are sequestered in autophagosomes and degraded by fusing with lysosomes (135). Autophagy is tightly regulated by highly conserved autophagy-related genes (ATGs) (Figure 4).
Autophagy activation is yet to be characterized for human alphacoronavirus infection. In the related porcine alphacoronavirus PEDV, autophagy was activated in Vero cells infected with PEDV strain CH/YNKM-8/2013, and autophagy inhibition suppressed viral replication and reduced the production of proinflammatory cytokines (44). Similarly, activation of autophagy and mitophagy in porcine epithelial cells (IPEC-J2) infected with TGEV (strain SHXB) benefited viral replication and protected infected cells from oxidative stress and apoptosis (148). In contrast, in two separate studies using swine testicular cells infected with TGEV (strain H165) or IPEC-J2 cells infected with PEDV (strain SM98), activation of autophagy indeed suppressed viral replication (43, 58). Such discrepancies might arise from differences in cell lines and virus strains, calling for more comprehensive in vivo studies.
As for betacoronavirus, initial studies observed colocalization of autophagy protein LC3 and Atg12 with MHV replicase protein nsp8, hinting that DMV formation might utilize components of cellular autophagy (99). However, MHV replication was not affected in ATG5−/− mouse embryonic fibroblasts (MEFs) (146). Also, replication of SARS-CoV was comparable in wild-type or ATG5−/− MEFs overexpressing ACE2, suggesting that intact autophagy is not required for betacoronavirus replication (104). Later, it was shown that MHV co-opted the host machinery for COPII-independent vesicular ER export to derive membranes for DMV formation. This process required the activity of nonlipidated LC3 but was independent of host autophagy (101). Such autophagy-independent activity of LC3 was also implicated in the replication of equine arteritis virus (EAV) of the family Arteriviridae (89). Therefore, it is quite likely that other viruses in the Nidovirales order share this LC3-hijacking strategy for replication.
Coronavirus nsp6 is a multipass transmembrane protein implicated in the formation of DMVs during SARS-CoV infection (1). Overexpression of nsp6 of IBV, MHV, or SARS-CoV activated the formation of autophagosomes from the ER via an omegasome intermediate (18). However, autophagosomes induced by IBV infection or overexpression of coronavirus nsp6 had smaller diameters compared with those induced by starvation, indicating that nsp6 might also restrict the expansion of autophagosomes (19).

INDUCTION OF APOPTOSIS DURING HCoV INFECTION

Apoptosis is one form of programmed cell death characterized by the highly controlled dismantling of cellular structures, which are released in membrane-bound vesicles (known as apoptotic bodies) that are engulfed by neighboring cells or phagocytes (114). Due to its self-limited nature, apoptosis is not immunogenic, thereby distinguishing it from necrotic cell death, where uncontrolled leakage of cellular contents activates an inflammatory response.
Apoptosis can be activated by two pathways (Figure 5). The intrinsic pathway is orchestrated by the B cell lymphoma 2 (Bcl2) family proteins (114). Among them, BAX and BAK are proapoptotic, channel-forming proteins that increase the mitochondrial outer membrane permeability (MOMP), whereas Bcl2-like proteins (such as Bcl2, Bcl-xL, and Mcl-1) are antiapoptotic factors that inhibit this process. Under stressful conditions (DNA damage, growth factor deprivation, etc.) BH3-only proteins are activated to overcome the inhibitory effect of Bcl2-like proteins. The resulting increase in MOMP leads to release of cytochrome c and formation of an apoptosome, thereby activating effector caspase 3/7. In the extrinsic pathway, binding of the death ligands [such as FasL and tumor necrosis factor-α (TNF-α)] to the cell surface death receptors (such as Fas and TNF receptor 1) leads to the formation of death-inducing signaling complex and activation of caspase 8, which either directly activates effector caspases or engages in cross talk with the intrinsic pathway by activating the BH3-only protein Bid (114).
Apoptosis induced by HCoV infection has been extensively investigated. In autopsy studies, hallmarks of apoptosis were observed in SARS-CoV-infected lung, spleen, and thyroid tissues (61). Also, apoptosis induced by infection of SARS-CoV, MERS-CoV, or other HCoVs was described in various in vitro systems and animal models (113, 136). Apart from respiratory epithelial cells, HCoVs also infect and induce apoptosis in a variety of other cell types. For example, HCoV-OC43 induced apoptosis in neuronal cells (30), while MERS-CoV induced apoptosis in primary T lymphocytes (15). HCoV-229E infection also causes massive cell death in dendritic cells, albeit independent of apoptosis induction (82). Collectively, induction of cell death in these immune cells explains the lymphopenia observed in some HCoV diseases (such as SARS) and may contribute to the suppression of host immune response.
Apoptosis can be induced by multiple mechanisms in HCoV-infected cells. SARS-CoV was shown to induce caspase-dependent apoptosis, which is dependent on but not essential for viral replication, as treatment of pan-caspase inhibitor z-VAD-FMK or overexpression of Bcl2 did not significantly affect SARS-CoV replication (36). In contrast, although MERS-CoV infection of human primary T lymphocytes was abortive, apoptosis was induced via activation of both intrinsic and extrinsic pathways (15). Apoptosis in neuronal cells infected with HCoV-OC43 involved mitochondrial translocation of BAX but was independent of caspase activation (30).
Apoptosis was also induced in cells overexpressing SARS-CoV proteins, including S, E, M, N, and accessory protein 3a, 3b, 6, 7a, 8a, and 9b (70). Among them, SARS-CoV E and 7a protein activated the intrinsic pathway by sequestering antiapoptotic Bcl-XL to the ER (112). Other proapoptotic mechanisms by SARS-CoV included interfering with prosurvival signaling by M protein and the ion channel activity of E and 3a (70). HCoV infection also modulated apoptosis by activating ER stress response and mitogen-activated protein kinase (MAPK) pathway, as discussed in detail in the following sections.

ACTIVATION OF ENDOPLASMIC RETICULUM STRESS DURING HCoV INFECTION

ER is a membranous organelle and the main site for synthesis, folding, and modification of secreted and transmembrane proteins. Affected by the extracellular environment and physiological status, the amount of protein synthesized in the ER can fluctuate substantially. When the ER folding capacity is saturated, unfolded proteins accumulate in the ER and lead to ER stress. During HCoV infection, viral structural proteins are produced in massive amounts. In particular, the S glycoprotein relies heavily on the ER protein chaperones and modifying enzymes for its folding and maturation (33). Indeed, overexpression of SARS-CoV S alone was sufficient to induce a potent ER stress response (11). In addition, membrane reorganization for DMV formation and membrane depletion for virion assembly may also contribute to ER stress during HCoV infection (38).
To restore ER homeostasis, signaling pathways known as unfolded protein response (UPR) will be activated. UPR consists of three interrelated pathways, named after the transmembrane sensors: protein kinase RNA-activated (PKR)-like ER protein kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6) (Figure 6). In the following section, activation of the three UPR branches by HCoV infection is discussed.

PERK Pathway and Integrated Stress Response

The PERK pathway is the first to be activated among the three UPR branches. In the stressed ER, protein chaperone GRP78 binds to unfolded proteins and dissociates from the luminal domain of PERK, leading to oligomerization and activation of PERK by autophosphorylation. Activated PERK phosphorylates the α subunit of eukaryotic initiation factor 2 (eIF2α), which inhibits the conversion of inactive GDP-bound eIF2α back to the active GTP-bound form, thereby suppressing translation initiation. The resulting global attenuation of protein synthesis reduces the ER protein influx and allows the ER to reprogram for preferential expression of UPR genes. Besides PERK, eIF2α can also be phosphorylated by three other kinases: heme-regulated inhibitor kinase (HRI), general control nonderepressible 2 (GCN2), and PKR. PKR is an interferon-stimulated gene (ISG) activated by binding of double-stranded RNA (dsRNA), a common intermediate during the replication of DNA and RNA viruses. Together, these four eIF2α kinases and their convergent downstream signaling pathways are known as the integrated stress response (ISR) (102).
Although global protein synthesis is attenuated under ISR, a subset of genes is preferentially translated (102). One of them is activating transcription factor 4 (ATF4), a basic leucine zipper (bZIP) transcription factor that switches on UPR effector genes. ATF4 also induces another bZIP protein C/EBP-homologous protein (CHOP), which is responsible for triggering apoptosis in cells under prolonged ER stress. ATF4 and CHOP further induce growth arrest and DNA damage–inducible protein 34 (GADD34), a regulatory subunit of protein phosphatase 1 (PP1) that dephosphorylates eIF2α. This negative feedback mechanism enables protein synthesis to resume after resolution of ER stress.
In one early study, phosphorylation of PKR, PERK, and eIF2α was observed in 293/ACE2 cells infected with SARS-CoV (61). Surprisingly, knockdown of PKR had no effect on SARS-CoV replication or virus-induced eIF2α phosphorylation, although SARS-CoV-induced apoptosis was significantly reduced. These data suggested that SARS-CoV-induced PKR activation might trigger apoptosis independent of eIF2α phosphorylation (61). As detailed in the section titled Innate Immunity and Proinflammatory Response, recent studies showed that the endoribonuclease activity of coronavirus nsp15 and dsRNA-binding activity of MERS-CoV protein 4a could also suppress PKR activation (28, 56, 100). Activation of ISR by other HCoVs is not fully understood. In neurons infected with HCoV-OC43, only transient eIF2α phosphorylation was observed at early infection, with no induction of ATF4 and CHOP (30).
As for animal coronaviruses, MHV-A59 infection induced significant eIF2α phosphorylation and ATF4 upregulation, but the CHOP/GADD34/PP1 negative-feedback loop was not activated, leading to a sustained translation attenuation (3). TGEV infection also induced eIF2α phosphorylation, and TGEV accessory protein 7 interacted with PP1 and alleviated translation attenuation by promoting eIF2α dephosphorylation (21). Finally, IBV infection triggered transient PKR, PERK, and eIF2α phosphorylation at early infection, which was rapidly inactivated by GADD34/PP1-mediated negative feedback (66, 123). Nonetheless, accumulation of CHOP promoted IBV-induced apoptosis, presumably by inducing proapoptotic protein tribbles homolog 3 (TRIB3) and suppressing the prosurvival extracellular regulated kinase 1/2 (ERK1/2) (66).

IRE1 Pathway

Besides being activated like PERK via dissociation of GRP78, IRE1 is also activated by direct binding of the unfolded protein to its N-terminal luminal domain (20). Upon activation by oligomerization and autophosphorylation, the cytosolic RNase domain of IRE1 mediates an unconventional splicing of the mRNA of X-box-binding protein 1 (XBP1) (138). The spliced and frameshifted transcript encodes XBP1S, a bZIP transcription factor inducing the expression of numerous UPR effector genes that enhance ER folding capacity (134). On the other hand, the unspliced transcript encodes XBP1U, a highly unstable protein that negatively regulates XBP1S activity (116). Under prolonged ER stress, the RNase domain of IRE1 can also degrade ER-associated mRNAs in a process called IRE1-dependent mRNA decay (RIDD) (49). Although RIDD facilitates ER homeostasis by reducing ER-associated mRNA, degradation of mRNAs encoding prosurvival proteins contributes to ER-stress-induced cell death (81). Finally, the kinase activity of IRE1 also activates a signaling cascade that ultimately activates c-Jun N-terminal kinase (JNK) (118). Activation of the IRE1-JNK pathway is required for induction of autophagy and apoptosis in cells under ER stress (93).
In one early study, overexpression of MHV S protein was found to induce XBP1 mRNA splicing (120). Also, infection with MHV-A59 induced XBP1 mRNA splicing, although XBP1S protein was not produced, presumably due to translation suppression by the PERK/PKR-eIF2α pathway (3). In sharp contrast, neither SARS-CoV infection nor overexpression of SARS-CoV S protein could induce XBP1 mRNA splicing (27, 120). However, when the SARS-CoV E gene was deleted by reverse genetics, the recombinant virus efficiently induced XBP1 mRNA splicing and upregulated stress-induced genes, leading to a more pronounced apoptosis compared with wild-type control (27). Thus, SARS-CoV E protein might serve as a virulent factor that suppressed activation of the IRE1 pathway and SARS-CoV-induced apoptosis. Infection with another Betacoronavirus HCoV-OC43 induced XBP1 mRNA splicing and upregulation of downstream UPR effector genes (30). Notably, two point mutations in the S protein were reproducibly observed during persistent infection of HCoV-OC43 in human neural cell lines. Compared with wild-type control, recombinant HCoV-OC43 harboring these two mutations induced a higher degree of XBP1 mRNA splicing and apoptosis (30). Taken together, activation of the IRE1 pathway seems to promote apoptosis during HCoV infection.
Efficient XBP1 mRNA splicing and upregulation of UPR effector genes were also observed in cells infected with IBV (37). In contrast with its role during HCoV infection, IRE1 indeed suppressed apoptosis in IBV-infected cells, presumably by converting proapoptotic XBP1U to antiapoptotic XBP1S, and by modulating phosphorylation of key kinases such as JNK and AKT (37).

ATF6 Pathway

Similar to PERK and IRE1, ATF6 is activated by ER stress-induced dissociation from GRP78. Alternatively, underglycosylation or reduction of disulfide bonds in its ER luminal domain can also activate ATF6 (69). Upon activation, ATF6 is translocated to the Golgi apparatus, where protease cleavage releases its N-terminal cytosolic domain (ATF6-p50). ATF6-p50 is a bZIP transcription factor that translocates to the nucleus and induces the expression of UPR effector genes harboring ER stress response element (ERSE) or ERSE-II in the promoters (139). Apart from ER protein chaperones, ATF6 also induces the expression of CHOP and XBP1, thereby connecting the three UPR branches into an integrated signaling network (102).
Activation of the ATF6 pathway by HCoV infection is less studied, and most studies have relied on indirect methods, such as luciferase reporter, due to the lack of a specific antibody. No ATF6 cleavage was detected in cells infected with SARS-CoV (27), and overexpression of SARS-CoV S protein failed to activate ATF6 luciferase reporter (11). However, ATF6 cleavage and nuclear translocation were observed in cells transfected with SARS-CoV accessory protein 8ab, and physical interaction between 8ab and the luminal domain of ATF6 was also determined (110). The SARS-CoV 8ab protein was only detected in early isolates during the pandemic, while two separated proteins 8a and 8b were encoded in later isolates resulting from a 29-nucleotide genome deletion (94).

ACTIVATION OF MAPK PATHWAYS DURING HCoV INFECTION

MAPKs are evolutionarily conserved serine/threonine protein kinases, which are activated in response to a variety of environmental stimuli, such as heat shock, DNA damage, and the treatment with mitogens or proinflammatory cytokines (55). MAPKs are currently classified into four groups, namely ERK1/2, ERK5, p38, and JNK. To become activated, MAPKs require dual phosphorylation of threonine and tyrosine by upstream MAPK kinases (MKKs) within a conserved TxY motif. MKKs are in turn activated by MKK kinases (MKKKs, also known as MAP3Ks). MAP3Ks are usually activated in multiple steps and regulated by complex mechanisms, such as allosteric inhibition and/or activation by yet other kinases (MAP4Ks) (55). Because MKKs have high substrate specificity toward the cognate MAPKs, classical MAPK signaling pathways are typically multi-tiered and linear. However, some levels of signaling cross talk do occur, and some atypical MAPKs can be directly activated by MAP3K. By phosphorylating their protein substrates (in many cases transcription factors), activated MAPKs regulate numerous critical cellular processes such as proliferation, differentiation, apoptosis, and immune response (55). The activation of p38, ERK, and JNK pathways during HCoV infection is discussed below (Figure 7).

p38 Pathway

Activated p38 translocates to the nucleus and directly or indirectly phosphorylates a broad range of substrate proteins, including important transcription factors such as cAMP response element-binding protein (CREB), ATF1, signal transducer and activator of transcription 1 (STAT1), and STAT3 (140). By mediating the phosphorylation of eIF4E, activated p38 can suppress the initiation of protein translation. The p38 pathway may also regulate apoptosis by phosphorylating of p53 or other proapoptotic proteins such as CHOP (8, 124).
In early studies, phosphorylation of p38, its upstream kinase MKK3/6, and its downstream substrates was detected in Vero E6 cells infected with SARS-CoV (85, 86). Specifically, p38-dependent phosphorylation of eIF4E might contribute to the suppression of cellular protein synthesis during SARS-CoV infection. However, SARS-CoV genome replication and viral protein synthesis were not affected by the treatment with p38 inhibitor, suggesting that p38 phosphorylation was not essential during SARS-CoV infection in cell culture (86). Notably, overexpression of SARS-CoV accessory protein 7a alone could induce p38 phosphorylation and inhibit cellular protein synthesis (60). Moreover, activation of the p38 pathway was also implicated in apoptosis induced by overexpression of SARS-CoV protein 3a or 7a (60, 95). Phosphorylation of p38 was also observed in human fetal lung cells L132 infected with HCoV-229E, and p38 inhibition was found to inhibit HCoV-229E replication (59). Activation of the p38 pathway was also observed in cells infected with feline coronavirus (FCoV), TGEV, MHV, or IBV (34).

ERK Pathway

Similar to p38, activated ERK also exerts its function by phosphorylating numerous transcription factors, such as ATF2, c-Fos, and Bcl6 (137). Unlike p38, activated ERK mediates the phosphorylation eIF4E binding protein 1 (eIF4EBP1), causing its dissociation from eIF4E and thereby promoting protein synthesis. ERK also directly phosphorylates 90-kDa ribosomal protein S6 kinases (p90RSKs), which are important kinases regulating protein translation and cell proliferation (32). ERK also regulates Bcl2 family proteins such as BAD, thereby suppressing apoptosis and promoting cell survival (137).
In an early study, phosphorylation of ERK and upstream kinases MKK1/2 was observed in Vero E6 cells infected with SARS-CoV (85). In fact, incubation of A549 cells with SARS-CoV S protein or SARS-CoV virus-like particles was sufficient to induce ERK phosphorylation (14). However, activation of p90RSK, one of the key substrates of ERK, was complicated in SARS-CoV-infected cells (88). Upon mitogen stimulation, p90RSK is first phosphorylated by ERK at Thr573 at the C terminus, which leads to autophosphorylation at Ser380. This then allows for the binding of another kinase that phosphorylates p90RSK at Ser221 in the N terminus, leading to its full activation (23). Interestingly, a basal level of Thr573 phosphorylation in p90RSK was abolished in SARS-CoV-infected Vero E6 cells (88). On the other hand, phosphorylation of p90RSK at Ser380 was significantly induced by SARS-CoV infection, which was dependent on the activation of the p38 pathway (88). Therefore, activation of p90RSK might adopt a completely different mechanism in SARS-CoV-infected cells, involving potential cross talk between the ERK and p38 pathways. The same study also observed that treatment with MKK1/2 inhibitor had no effect on SARS-CoV-induced apoptosis, suggesting that activation of the ERK pathway was not sufficient to antagonize apoptosis during SARS-CoV infection (88). This is different from infection with IBV, where ERK apparently served as an antiapoptotic factor (66). Finally, activation of the ERK pathway was also observed in cells infected with MERS-CoV and HCoV-229E (69).

JNK Pathway

Similar to p38 and ERK, active JNK translocates to the nucleus to phosphorylate a number of transcription factors such as c-Jun and ATF2 (106). Phosphorylated c-Jun then dimerizes with other proteins to form the activator protein 1 (AP-1) complex, which binds to promoters with 12-O-tetradecanoylphobol-13-acetate response element (TRE) and activates gene expression (47). Besides inducing the transcription of proapoptotic genes such as Bak and FasL in the nucleus, JNK also translocates to the mitochondria and directly phosphorylates Bcl2 family proteins, thereby promoting stress-induced apoptosis (133).
Phosphorylation of JNK and its upstream kinases MKK4 and MKK7 was observed in Vero E6 cells infected with SARS-CoV (87). Additionally, JNK phosphorylation was detected in 293T cells overexpressing SARS-CoV S protein, mediated by protein kinase C epsilon in a calcium-independent pathway (72). Interestingly, treatment with JNK inhibitor abolished persistent infection of SARS-CoV in Vero E6 cells, suggesting a prosurvival function of the JNK pathway (87). This is quite unexpected because apoptosis induced by overexpression of SARS-CoV N or accessory protein 6 or 7a was JNK dependent (69), and activation of JNK also promoted IBV-induced apoptosis (37, 39). Presumably JNK might be proapoptotic during initial SARS-CoV infection but later switched to a prosurvival role in persistently infected cells.

INNATE IMMUNITY AND PROINFLAMMATORY RESPONSE

The innate immune system is a conserved defense strategy critical for the initial detection and restriction of pathogens and later activation of the adaptive immune response. Effective activation of innate immunity relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) (69). Upon activation by PAMPs, PRRs recruit adaptor proteins, which initiate complicated signaling pathways involving multiple kinases. This ultimately leads to the activation of crucial transcription factors including interferon regulatory factor 3 (IRF3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and AP-1. Synergistically, these factors promote the production of type I interferons (IFN-I), which are released and act on neighboring cells by binding to IFN-α/β receptor (IFNAR) (69). The antiviral activity of IFN-I is mediated by the induction of numerous interferon-stimulated genes (ISGs), which antagonize viral replication by various mechanisms (Figure 8). Meanwhile, cytokines and chemokines are also induced to activate an inflammatory response, which is also sometimes responsible for extensive tissue damage and other immunopathies associated with HCoV infection (98).
While mild HCoVs such as HCoV-229E typically induced a high level of IFN-I production (82), SARS-CoV and MERS-CoV were shown to utilize numerous mechanisms to suppress the activation of host innate immune response. Several structural proteins (M and N), nonstructural proteins (nsp1 and nsp3), and accessory proteins of SARS-CoV and/or MERS-CoV were identified as interferon antagonists (40, 69, 70). In the following section, the involvement of UPR/ISR and MAPK in HCoV-induced innate immunity is discussed, followed by two important strategies utilized by HCoV to modulate the innate immune response.

Involvement of ER Stress and ISR

UPR pathways may modulate innate immune and cytokine signaling by multiple mechanisms, including activation of NF-κB and cross talk with MAPK pathways (38). Also, PKR/eIF2α/ATF4-dependent upregulation of GADD34 was essential for the production of interferon beta (IFN-β) and interleukin 6 (IL-6) induced by polyI:C or chikungunya virus infection (16). Moreover, UPR transcription factors such as XBP1 may directly bind to the promoter/enhancer of IFN-β and IL-6 to activate transcription (78). Recently, it was found that while the PERK branch of UPR suppressed TGEV replication by activating NF-κB-dependent IFN-I production (131), the IRE1 branch indeed facilitated IFN-I evasion by downregulating the expression level of miRNA miR-30a-5p (75). Whether similar mechanisms apply during HCoV infection will require further investigation.
Another important antiviral protein in innate immunity is PKR, which requires dsRNA binding for full activation. In a recent study, endoribonuclease (EndoU) activity encoded by coronavirus nsp15 was found to efficiently suppress the activation of host dsRNA sensors including PKR (56). Replication of EndoU-deficient MHV was greatly attenuated and restricted in vivo even during the early phase of infection. It also triggered an elevated interferon response and induced PKR-dependent apoptosis (28, 56). Moreover, EndoU-deficient coronavirus also effectively activated MDA5 and OAS/RNase L, caused attenuated disease in vivo, and stimulated a protective immune response (28). Interestingly, protein 4a (p4a) of MERS-CoV was also identified as a dsRNA-binding protein (100). By sequestering dsRNA, MERS-CoV p4a suppressed PKR-dependent translational inhibition, formation of stress granules, and the activation of interferon signaling (100).

Involvement of MAPK

The MAPK pathways contribute to innate immunity mainly by activating AP-1 and other transcription factors regulating the expression of proinflammatory cytokines. For instance, activation of p38 was essential for cytokine production and immunopathology in mice infected with SARS-CoV (53). Also, upregulation and release of CCL2 and IL-8 induced by the binding of SARS-CoV S protein was dependent on the activation of ERK (12, 14). Similarly, the JNK pathway was required for the induction of cyclooxygenase 2 (COX-2) and IL-8 in cells overexpressing SARS-CoV S protein (12, 72). Similar involvement of MAPK pathway in the induction of proinflammatory cytokines (such as IL-6, IL-8, and TNF-α) was determined for numerous animal coronaviruses as well (34). In addition, MAPK may also regulate cytokine signaling. For example, SARS-CoV infection caused dephosphorylation of STAT3 at Tyr705 in VeroE6 cells, leading to its nuclear exclusion (85). Inhibition of p38 partially inhibited this process, suggesting a suppressive role of p38 in STAT3 signaling during SARS-CoV infection (85).

Deubiquitinating and deISGylating Activity of HCoV PLPro

Coronaviruses typically encode one or two PLPros in nsp3. Besides the polyprotein-cleaving protease activity, deubiquitinating activity was also identified for PLPro of SARS-CoV, MERS-CoV, and IBV, as well as PLP2 of HCoV-NL63 and MHV-A59 (40). Additionally, PLPro of SARS-CoV and MERS-CoV also recognized proteins modified by ISG15 and catalyzed its removal (deISGylation) (83). Expectedly, deubiquitination and deISGylation of critical factors in the innate immune signaling were utilized by HCoV to antagonize host antiviral response. For instance, overexpressing PLPro of SARS-CoV or MERS-CoV significantly reduced the expression of IFN-β and proinflammatory cytokines in MDA5-stimulated 293T cells (83). Also, SARS-CoV PLPro catalyzed deubiquitination of TNF-receptor-associated factor 3 (TRAF3) and TRAF6, thereby suppressing IFN-I and proinflammatory cytokines induced by TLR7 agonist (63). The deubiquitinating activity of SARS-CoV PLPro also suppressed a constitutively active phosphomimetic IRF3, suggesting its involvement in the postactivation signaling of IRF3 (80). Nonetheless, HCoV PLPro could also antagonize innate immunity by mechanisms independent of its deubiquitinating/deISGylating activity (29).

Ion Channel Activity and PDZ-Binding Motif of Viroporins Encoded by HCoV

Viroporins are small hydrophobic viral proteins that oligomerize to form ion channels on cellular membrane and/or virus envelope. They are encoded by a wide range of viruses from different families (35). For coronaviruses, ion channel activity has been described for the E protein of MHV (76), SARS-CoV (67), and IBV (117); 3a (73) and 8a (13) of SARS-CoV; ORF3 of PEDV (122); ORF4a of HCoV-229E (141); and ns12.9 of HCoV-OC43 (142).
Ion channel activity is essential for viral replication for some coronaviruses. For instance, recombinant IBV harboring ion channel–defective mutation T16A or A26F in the E gene produced similar intracellular viral titers but released a significantly lower level of infectious virions to the supernatant, suggesting that ion channel activity might specifically contribute to IBV particle release (117). Similarly, compared with wild-type HCoV-OC43, recombinant virus lacking ns12.9 suffered a tenfold reduction of virus titer in vivo and in vitro (142). Unlike IBV, however, intracellular titers of HCoV-OC43-Δns12.9 were markedly reduced, and electron microscopy suggested defective virion morphogenesis (142). Experiments using small interfering RNA (siRNA) also showed that silencing SARS-CoV 3a (73), HCoV-229E ORF4a (141), or PEDV ORF3 (122) resulted in reduced virion production or release of the correspondent virus. Although ion channel activity of SARS-CoV E protein is not essential for viral replication, it contributes to viral fitness as revealed in a competition assay (91).
Ion channel activity also contributes to HCoV virulence and pathogenesis, particularly induction of stress response and proinflammatory response. In one early study using recombinant virus lacking the E gene, SARS-CoV E protein was shown to downregulate the IRE1 pathway of UPR, reduce virus-induced apoptosis, and stimulate the expression of proinflammatory cytokines (27). Later, using SARS-CoV mutants lacking the E protein ion channel activity (EIC), it was shown that although viral replication was not affected, in vivo virulence in a mouse model was markedly reduced for EIC mutants (91). Remarkably, compared with wild-type control, lung edema accumulation was significantly reduced in mice infected with the EIC mutants, accompanied by reduced production of proinflammatory cytokines IL-1β, TNF-α, and IL-6 (91). Specifically, the ion channel activity of SARS-CoV E protein increased the permeability of ERGIC/Golgi membrane and caused the cytosolic release of calcium ion, thereby activating the NLRP3 inflammasome to induce IL-1β production (92). Similarly, compared with wild-type control, BALB/c mice intranasally infected with HCoV-OC43-Δns12.9 showed significant reduction in viral titers and the production of proinflammatory cytokines IL-1β and IL-6 (142).
Apart from the ion channel activity, some coronavirus viroporins also harbor PDZ-binding motifs (PBMs) at their C terminus, which are recognized by cellular PDZ proteins. For example, the last four amino acids of SARS-CoV E protein (DLLV) formed a PBM that interacted with protein associated with Lin seven 1 (PALS1) and modified its subcellular localization. This further led to altered tight junction formation and epithelial morphogenesis, which might contribute to the disruption of lung epithelium in SARS patients (115). Importantly, compared with wild-type control, recombinant SARS-CoV with E protein PBM deleted or mutated was attenuated in vivo and caused reduced immune response (53). SARS-CoV E protein PBM was found to interact with host PDZ protein syntenin and led to its relocation to the cytoplasm, where it activated p38 and induced the expression of proinflammatory cytokines (53). Interestingly, when recombinant SARS-CoV with defective E protein PBM was passaged in cell culture or in vivo, virulence-associated reverting mutations accumulated that either restored the E protein PBM or incorporated a novel PBM sequence to the M or 8a gene (54). This suggests at least one PBM on a transmembrane protein is required for the virulence of SARS-CoV. Accessory protein 3a, another viroporin encoded by SARS-CoV, also harbors a C-terminal PBM. Interestingly, while recombinant SARS-CoV lacking both E and 3a gene was not viable, the presence of either protein with a functional PBM could restore viability (9). Except for HCoV-HKU1, all HCoV E proteins contain PBMs, but their functional significance requires further investigation.

CONCLUSION

As obligate intracellular parasites restricted by limited genomic capacities, all viruses have evolved to hijack host factors to facilitate their replication. Meanwhile, host cells have also developed intricate signaling networks to detect, control, and eradicate intruding viruses, although these antiviral pathways are often evaded, inhibited, or subverted by various viral countermechanisms. Virus-host interaction therefore represents an ongoing evolutionary arms race perfected at the molecular and cellular levels. In this review, we have summarized recent progress in studies of HCoV-host interaction, with an emphasis on co-opted host factors and critical signaling pathways. Evidently, every step of the HCoV replication cycle engages certain host factors, and dramatic alterations in cellular structure and physiology activate host stress response, autophagy, apoptosis, and innate immunity. With the recent advance in multi-omics analysis and genome editing (such as CRISPR), it is very likely that more and more host factors and pathways implicated in HCoV infection will be uncovered and characterized in the future. Supplemented with the several well-established HCoV animal models and reverse genetics systems, these studies will hopefully unravel previously unknown mechanisms underlying the molecular biology of HCoVs and how they interact with the host.
From a practical perspective, the study on HCoV-host interaction is also critical in the face of potential future emergence and/or reemergence of highly pathogenic HCoV. In the last 15 years, we have witnessed outbreaks of two zoonotic and highly pathogenic HCoVs. Severe symptoms observed in SARS and MERS patients are indeed largely contributed by immunopathies due to the aberrant activation of the immune system. In sharp contrast, other mild HCoVs cause self-limiting upper respiratory tract infections, which only rarely develop into life-threatening diseases in immune-compromised individuals. How can these related viruses manifest so differently in terms of pathogenesis? To a certain extent, this may be explained by the different patterns of HCoV interaction with the host cells. One example is that mild HCoVs generally induce a high level of IFN-I production, whereas SARS-CoV and MERS-CoV are known to antagonize interferon induction and signaling via numerous mechanisms. A better understanding of HCoV-host interaction will enable us to pinpoint critical viral and host factors that control the pathogenesis of HCoV and to develop therapeutic approaches more effective against HCoV infection. For instance, drugs targeting essential host factors are less likely to select for drug-resistant HCoV variants. Also, while overactive immune response must be suppressed in severe HCoV diseases, enhancing the activation of the immune system would be beneficial during vaccine administration. Finally, findings on HCoV-host interaction may also be extrapolated to other animal and zoonotic coronaviruses, shedding new light on the prevention and control of these economically important and veterinary pathogens as well as emergence of novel zoonotic coronaviral pathogens.

disclosure statement

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

acknowledgments

This work was partially supported by Guangdong Natural Science Foundation grant 2018A030313472, and Guangdong Province Key Laboratory of Microbial Signals and Disease Control grants MSDC-2017-05 and MSDC-2017-06, Guangdong, People's Republic of China.

literature cited