A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging
- Weiqi Zhang1,*,
- Jingyi Li2,*,
- Keiichiro Suzuki3,*,
- Jing Qu4,*,
- Ping Wang1,
- Junzhi Zhou1,
- Xiaomeng Liu2,
- Ruotong Ren1,
- Xiuling Xu1,
- Alejandro Ocampo3,
- Tingting Yuan1,
- Jiping Yang1,
- Ying Li1,
- Liang Shi6,
- Dee Guan1,
- Huize Pan1,
- Shunlei Duan1,
- Zhichao Ding1,
- Mo Li3,
- Fei Yi5,
- Ruijun Bai4,
- Yayu Wang6,
- Chang Chen1,
- Fuquan Yang1,
- Xiaoyu Li7,
- Zimei Wang8,
- Emi Aizawa3,
- April Goebl3,9,
- Rupa Devi Soligalla3,
- Pradeep Reddy3,
- Concepcion Rodriguez Esteban3,
- Fuchou Tang2,10,11,12,†,
- Guang-Hui Liu1,8,11,13,†,
- Juan Carlos Izpisua Belmonte3,†
+Author Affiliations
- ↵†Corresponding author. E-mail: ghliu@ibp.ac.cn (G.-H.L.); tangfuchou@pku.edu.cn (F.T.); belmonte@salk.edu (J.C.I.B.)
- ↵* These authors contributed equally to this work.
Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.
No hay comentarios:
Publicar un comentario