traductor

martes, 9 de enero de 2024

J.N.1 es más grave que las variantes anteriores/SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency

 

J.N.1 es más grave que las variantes anteriores. "Nuevos estudios sugieren que las nuevas variantes de COVID altamente mutadas 'Pirola' BA.2.86 y JN.1 pueden causar una enfermedad más grave".

Erin Prater

https://fortune.com/well/2024/01/08/covid-omicron-variants-pirola-ba286-jn1-more-severe-disease-lung-gi-tract-symptoms/ 

"La variante Pirola del SARS-CoV-2 puede infectar de forma muy eficaz las células que recubren los pulmones (células epiteliales) y esto podría suponer una mayor probabilidad de enfermedad grave.".

https://cuidateplus.marca.com/bienestar/2024/01/08/variante-pirola-coronavirus-buena-vacuna-regular-pulmones-181059.html

New, highly mutated COVID variants ‘Pirola’ BA.2.86 and JN.1 may cause more severe disease, new studies suggest

Highly mutated COVID variant BA.2.86—close ancestor of globally dominant “Pirola” JN.1—may lead to more severe disease than other Omicron variants, according to two new studies published Monday in the journal Cell.

In one study, researchers from Ohio State University performed a variety of experiments using a BA.2.86 pseudovirus—a lab-created version that isn’t infectious. They found that BA.2.86 can fuse to human cells more efficiently and infect cells that line the lower lung—traits that may make it more similar to initial, pre-Omicron strains that were more deadly.

In the other study, researchers in Germany and France came to the same conclusion. “BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages: robust lung cell entry,” the authors wrote. The variant “might constitute an elevated health threat as compared to previous Omicron sublineages,” they added.

While illness caused by the initial Omicron strain was typically considered more mild than that caused by earlier variants, it’s impossible to say definitively, experts say. That’s because those sickened by Omicron had generally already been infected with an earlier version of the virus, likely softening the blow. Additionally, many had been vaccinated, to the same effect.

Still, Omicron had a penchant for infecting the upper airway versus the lower airway, where prior versions of the virus tended to accumulate, causing more severe disease. The new studies offer proof that this trend may very well be reversing, the authors contend. If true, it’s bad news for those who hoped the virus was slowly attenuating to the equivalent of a common cold.

“We cannot ignore the evidence” that Omicron may be evolving into a more severe form of itself, Dr. Shan-Lu Liu—professor and co-director of the Viruses and Emerging Pathogens Program at Ohio State University, and lead author on the first study—told Fortune.

Increasing COVID hospitalizations in the U.S. and around the globe potentially bolster the argument, he added.

It’s tough to tell if disease caused by COVID is again becoming more severe because waning immunity muddles matters, experts say. Antibody immunity to COVID from vaccination or prior infection—which can reduce the severity of the disease or prevent infection altogether—declines after three to six months. Globally, uptake of the latest COVID booster, released this past fall, leaves much to be desired. In the U.S., it sits under 20%, according to the Centers for Disease Control and Prevention. In theory, the longer it’s been since someone was infected with COVID or received a booster, the greater their risk for severe outcomes like hospitalization and death.

Is JN.1 more severe than Omicron?

As for what the studies might mean regarding the severity of JN.1 infection, the jury is still out. But the new findings—combined with expert speculation that JN.1 may be showing a preference for infecting the GI tract—warrant more study into the evolving nature of the virus, according to Liu.

Another concern of his: the possibility of COVID recombining with another coronavirus in animals, then transitioning back over to humans—throwing another viral plot twist into the pandemic’s narrative.

Some experts contend that Omicron—highly mutated compared to previous strains—originated in animals, then spilled back over into humans (as opposed to developing in a human with a long-term infection, as others contend). Regardless, animals serve as an underappreciated wild card, Liu contends. Case in point: Many of Ohio’s white-tailed deer have tested positive for COVID, affording the virus an additional population in which to mutate.

Another, perhaps larger concern of Liu: the possibility that COVID recombines with another, more deadly coronavirus like SARS or MERS, which had case fatality rates around 10% and 34%, respectively. In contrast, COVID’s case fatality rate, among unvaccinated Americans, sat around 1% prior to Omicron, and around 0.11% after.

“Anything can happen,” Liu said. “It’s really hard to predict what’s going to come next, but nature can do amazing things.”

The bottom line when it comes to the power of animals to further evolve the virus and send another curveball flying humanity’s way: “Humans, watch out.”

SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency

 

Highlights

  • BA.2.86 efficiently enters lung cells and uses TMPRSS2 for lung cell entry
  • Mutations S50L and K356T are responsible for efficient lung cell entry of BA.2.86
  • BA.2.86 is highly resistant against therapeutic antibodies
  • BA.2.86 evades antibodies induced upon infection and vaccination

Summary

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.

Graphical abstract

Keywords:

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access

Read-It-Now

Purchase access to all full-text HTML articles for 6 or 36 hr at a low cost. Click here to explore this opportunity.

One-time access price info

Subscribe:

Subscribe to Cell
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Parums D.V.
    Editorial: A Rapid Global Increase in COVID-19 is Due to the Emergence of the EG.5 (Eris) Subvariant of Omicron SARS-CoV-2.
    Med. Sci. Monit. 2023; 29e942244
    • Yue C.
    • Song W.
    • Wang L.
    • Jian F.
    • Chen X.
    • Gao F.
    • Shen Z.
    • Wang Y.
    • Wang X.
    • Cao Y.
    ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5.
    Lancet Infect. Dis. 2023; 23: 278-280
    • Hoffmann M.
    • Arora P.
    • Nehlmeier I.
    • Kempf A.
    • Cossmann A.
    • Schulz S.R.
    • Morillas Ramos G.
    • Manthey L.A.
    • Jack H.M.
    • Behrens G.M.N.
    • Pohlmann S.
    Profound neutralization evasion and augmented host cell entry are hallmarks of the fast-spreading SARS-CoV-2 lineage XBB.1.5.
    Cell. Mol. Immunol. 2023; 20: 419-422
    • Addetia A.
    • Piccoli L.
    • Case J.B.
    • Park Y.J.
    • Beltramello M.
    • Guarino B.
    • Dang H.
    • de Melo G.D.
    • Pinto D.
    • Sprouse K.
    • et al.
    Neutralization, effector function and immune imprinting of Omicron variants.
    Nature. 2023;
    • Zhang L.
    • Kempf A.
    • Nehlmeier I.
    • Cossmann A.
    • Dopfer-Jablonka A.
    • Stankov M.V.
    • Schulz S.R.
    • Jäck H.M.
    • Behrens G.M.N.
    • Pöhlmann S.
    • Hoffmann M.
    Neutralisation sensitivity of SARS-CoV-2 lineages EG.5.1 and XBB.2.3.
    Lancet Infect. Dis. 2023; 23: e391-e392
    • Cao Y.
    • Jian F.
    • Wang J.
    • Yu Y.
    • Song W.
    • Yisimayi A.
    • Wang J.
    • An R.
    • Chen X.
    • Zhang N.
    • et al.
    Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution.
    Nature. 2023; 614: 521-529
    • Ito J.
    • Suzuki R.
    • Uriu K.
    • Itakura Y.
    • Zahradnik J.
    • Kimura K.T.
    • Deguchi S.
    • Wang L.
    • Lytras S.
    • Tamura T.
    • et al.
    Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant.
    Nat. Commun. 2023; 14: 2671
    • Harris E.
    CDC Assesses Risk From BA.2.86, Highly Mutated COVID-19 Variant.
    JAMA. 2023;
    • Rasmussen M.
    • Moller F.T.
    • Gunalan V.
    • Baig S.
    • Bennedbaek M.
    • Christiansen L.E.
    • Cohen A.S.
    • Ellegaard K.
    • Fomsgaard A.
    • Franck K.T.
    • et al.
    First cases of SARS-CoV-2 BA.2.86 in Denmark, 2023.
    Euro. Surveill. 2023; 28
    • Wannigama D.L.
    • Amarasiri M.
    • Phattharapornjaroen P.
    • Hurst C.
    • Modchang C.
    • Chadsuthi S.
    • Anupong S.
    • Miyanaga K.
    • Cui L.
    • Fernandez S.
    • et al.
    Tracing the new SARS-CoV-2 variant BA.2.86 in the community through wastewater surveillance in Bangkok, Thailand.
    Lancet Infect. Dis. 2023; 23: e464-e466
    • Callaway E.
    Why a highly mutated coronavirus variant has scientists on alert.
    Nature. 2023; 620: 934
    • Looi M.K.
    Covid-19: Scientists sound alarm over new BA.2.86 "Pirola" variant.
    BMJ. 2023; 382: 1964
    • Bart S.M.
    • Rothstein A.P.
    • Philipson C.W.
    • Smith T.C.
    • Simen B.B.
    • Tamin A.
    • Atherton L.J.
    • Harcourt J.L.
    • Taylor Walker A.
    • Payne D.C.
    • et al.
    Notes from the Field: Early Identification of the SARS-CoV-2 Omicron BA.2.86 Variant by the Traveler-Based Genomic Surveillance Program - Dulles International Airport.
    MMWR Morb. Mortal Wkly Rep. 2023; 72 (August 2023): 1168-1169
    • Reeve L.
    • Tessier E.
    • Trindall A.
    • Abdul Aziz N.I.B.
    • Andrews N.
    • Futschik M.
    • Rayner J.
    • Didier’Serre A.
    • Hams R.
    • Groves N.
    • et al.
    High attack rate in a large care home outbreak of SARS-CoV-2 BA.2.86, East of England, August 2023.
    Euro. Surveill. 2023; 28: 2300489
    • Lambrou A.S.
    • South E.
    • Ballou E.S.
    • Paden C.R.
    • Fuller J.A.
    • Bart S.M.
    • Butryn D.M.
    • Novak R.T.
    • Browning S.D.
    • Kirby A.E.
    • et al.
    Early Detection and Surveillance of the SARS-CoV-2 Variant BA.2.86 - Worldwide.
    MMWR Morb. Mortal. Wkly Rep. 2023; 72 (July-October 2023): 1162-1167
    • Hoffmann M.
    • Kleine-Weber H.
    • Schroeder S.
    • Kruger N.
    • Herrler T.
    • Erichsen S.
    • Schiergens T.S.
    • Herrler G.
    • Wu N.H.
    • Nitsche A.
    • et al.
    SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
    Cell. 2020; 181: 271-280 e278
    • Zhou P.
    • Yang X.L.
    • Wang X.G.
    • Hu B.
    • Zhang L.
    • Zhang W.
    • Si H.R.
    • Zhu Y.
    • Li B.
    • Huang C.L.
    • et al.
    A pneumonia outbreak associated with a new coronavirus of probable bat origin.
    Nature. 2020; 579: 270-273
    • Laha S.
    • Chakraborty J.
    • Das S.
    • Manna S.K.
    • Biswas S.
    • Chatterjee R.
    Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission.
    Infect. Genet. Evol. 2020; 85104445
    • Al-Jawabreh A.
    • Ereqat S.
    • Dumaidi K.
    • Al-Jawabreh H.
    • Nasereddin A.
    Complete genome sequencing of SARS-CoV-2 strains: A pilot survey in Palestine reveals spike mutation H245N.
    BMC Res. Notes. 2021; 14: 466
    • Wang R.
    • Chen J.
    • Gao K.
    • Hozumi Y.
    • Yin C.
    • Wei G.W.
    Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants.
    Commun. Biol. 2021; 4: 228
    • Benslimane F.M.
    • Al Khatib H.A.
    • Al-Jamal O.
    • Albatesh D.
    • Boughattas S.
    • Ahmed A.A.
    • Bensaad M.
    • Younuskunju S.
    • Mohamoud Y.A.
    • Al Badr M.
    • et al.
    One Year of SARS-CoV-2: Genomic Characterization of COVID-19 Outbreak in Qatar.
    Front. Cell. Infect. Microbiol. 2021; 11768883
    • Anwar M.Z.
    • Lodhi M.S.
    • Khan M.T.
    • Khan M.I.
    • Sharif S.
    Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic.
    Genes (Basel). 2022; 13
    • Guruprasad L.
    Human SARS CoV-2 spike protein mutations.
    Proteins. 2021; 89: 569-576
    • Lusvarghi S.
    • Wang W.
    • Herrup R.
    • Neerukonda S.N.
    • Vassell R.
    • Bentley L.
    • Eakin A.E.
    • Erlandson K.J.
    • Weiss C.D.
    Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects.
    J. Virol. 2022; 96e0111021
    • Vellas C.
    • Tremeaux P.
    • Del Bello A.
    • Latour J.
    • Jeanne N.
    • Ranger N.
    • Danet C.
    • Martin-Blondel G.
    • Delobel P.
    • Kamar N.
    • Izopet J.
    Resistance mutations in SARS-CoV-2 omicron variant in patients treated with sotrovimab.
    Clin. Microbiol. Infect. 2022; 28: 1297-1299
    • Mykytyn A.Z.
    • Fouchier R.A.
    • Haagmans B.L.
    Antigenic evolution of SARS coronavirus 2.
    Curr Opin Virol. 2023; 62101349
    • Huo J.
    • Dijokaite-Guraliuc A.
    • Liu C.
    • Zhou D.
    • Ginn H.M.
    • Das R.
    • Supasa P.
    • Selvaraj M.
    • Nutalai R.
    • Tuekprakhon A.
    • et al.
    A delicate balance between antibody evasion and ACE2 affinity for Omicron BA.2.75.
    Cell Rep. 2023; 42111903
    • Qu P.
    • Evans J.P.
    • Zheng Y.M.
    • Carlin C.
    • Saif L.J.
    • Oltz E.M.
    • Xu K.
    • Gumina R.J.
    • Liu S.L.
    Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant.
    Cell Host Microbe. 2022; 30: 1518-1526 e1514
    • Saito A.
    • Irie T.
    • Suzuki R.
    • Maemura T.
    • Nasser H.
    • Uriu K.
    • Kosugi Y.
    • Shirakawa K.
    • Sadamasu K.
    • Kimura I.
    • et al.
    Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation.
    Nature. 2022; 602: 300-306
    • Bussani R.
    • Schneider E.
    • Zentilin L.
    • Collesi C.
    • Ali H.
    • Braga L.
    • Volpe M.C.
    • Colliva A.
    • Zanconati F.
    • Berlot G.
    • et al.
    Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology.
    EBioMedicine. 2020; 61103104
    • Braga L.
    • Ali H.
    • Secco I.
    • Chiavacci E.
    • Neves G.
    • Goldhill D.
    • Penn R.
    • Jimenez-Guardeno J.M.
    • Ortega-Prieto A.M.
    • Bussani R.
    • et al.
    Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia.
    Nature. 2021; 594: 88-93
    • Rajah M.M.
    • Bernier A.
    • Buchrieser J.
    • Schwartz O.
    The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation.
    J. Mol. Biol. 2022; 434167280
    • Hoffmann M.
    • Wong L.R.
    • Arora P.
    • Zhang L.
    • Rocha C.
    • Odle A.
    • Nehlmeier I.
    • Kempf A.
    • Richter A.
    • Halwe N.J.
    • et al.
    Omicron subvariant BA.5 efficiently infects lung cells.
    Nat. Commun. 2023; 14: 3500
    • Furusawa Y.
    • Kiso M.
    • Iida S.
    • Uraki R.
    • Hirata Y.
    • Imai M.
    • Suzuki T.
    • Yamayoshi S.
    • Kawaoka Y.
    SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters.
    EBioMedicine. 2023; 91104561
    • Schmidt F.
    • Weisblum Y.
    • Muecksch F.
    • Hoffmann H.H.
    • Michailidis E.
    • Lorenzi J.C.C.
    • Mendoza P.
    • Rutkowska M.
    • Bednarski E.
    • Gaebler C.
    • et al.
    Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses.
    J. Exp. Med. 2020; 217
    • Riepler L.
    • Rossler A.
    • Falch A.
    • Volland A.
    • Borena W.
    • von Laer D.
    • Kimpel J.
    Comparison of Four SARS-CoV-2 Neutralization Assays.
    Vaccines (Basel). 2020; 9
    • Iwata-Yoshikawa N.
    • Kakizaki M.
    • Shiwa-Sudo N.
    • Okura T.
    • Tahara M.
    • Fukushi S.
    • Maeda K.
    • Kawase M.
    • Asanuma H.
    • Tomita Y.
    • et al.
    Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways.
    Nat, Commun. 2022; 13: 6100
    • Hui K.P.Y.
    • Ho J.C.W.
    • Cheung M.C.
    • Ng K.C.
    • Ching R.H.H.
    • Lai K.L.
    • Kam T.T.
    • Gu H.
    • Sit K.Y.
    • Hsin M.K.Y.
    • et al.
    SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo.
    Nature. 2022; 603: 715-720
    • Shuai H.
    • Chan J.F.
    • Hu B.
    • Chai Y.
    • Yuen T.T.
    • Yin F.
    • Huang X.
    • Yoon C.
    • Hu J.C.
    • Liu H.
    • et al.
    Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron.
    Nature. 2022; 603: 693-699
    • Meng B.
    • Abdullahi A.
    • Ferreira I.
    • Goonawardane N.
    • Saito A.
    • Kimura I.
    • Yamasoba D.
    • Gerber P.P.
    • Fatihi S.
    • Rathore S.
    • et al.
    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity.
    Nature. 2022; 603: 706-714
    • Chen D.Y.
    • Chin C.V.
    • Kenney D.
    • Tavares A.H.
    • Khan N.
    • Conway H.L.
    • Liu G.
    • Choudhary M.C.
    • Gertje H.P.
    • O'Connell A.K.
    • et al.
    Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation.
    Nature. 2023; 615: 143-150
    • Halfmann P.J.
    • Iida S.
    • Iwatsuki-Horimoto K.
    • Maemura T.
    • Kiso M.
    • Scheaffer S.M.
    • Darling T.L.
    • Joshi A.
    • Loeber S.
    • Singh G.
    • et al.
    SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.
    Nature. 2022; 603: 687-692
    • Suzuki R.
    • Yamasoba D.
    • Kimura I.
    • Wang L.
    • Kishimoto M.
    • Ito J.
    • Morioka Y.
    • Nao N.
    • Nasser H.
    • Uriu K.
    • et al.
    Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant.
    Nature. 2022; 603: 700-705
    • Raglow Z.
    • Surie D.
    • Chappell J.D.
    • Zhu Y.
    • Martin E.T.
    • Kwon J.H.
    • Frosch A.E.
    • Mohamed A.
    • Gilbert J.
    • Bendall E.E.
    • et al.
    SARS-CoV-2 shedding and evolution in immunocompromised hosts during the Omicron period: a multicenter prospective analysis.
    medRxiv. 2023;
    • Berkhout B.
    • Herrera-Carrillo E.
    SARS-CoV-2 Evolution: On the Sudden Appearance of the Omicron Variant.
    J. Virol. 2022; 96e0009022
    • Escalera A.
    • Gonzalez-Reiche A.S.
    • Aslam S.
    • Mena I.
    • Laporte M.
    • Pearl R.L.
    • Fossati A.
    • Rathnasinghe R.
    • Alshammary H.
    • van de Guchte A.
    • et al.
    Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission.
    Cell Host Microbe. 2022; 30: 373-387 e377
    • Chan J.F.
    • Huang X.
    • Hu B.
    • Chai Y.
    • Shi H.
    • Zhu T.
    • Yuen T.T.
    • Liu Y.
    • Liu H.
    • Shi J.
    • et al.
    Altered host protease determinants for SARS-CoV-2 Omicron.
    Sci. Adv. 2023; 9eadd3867
    • Kimura I.
    • Yamasoba D.
    • Tamura T.
    • Nao N.
    • Suzuki T.
    • Oda Y.
    • Mitoma S.
    • Ito J.
    • Nasser H.
    • Zahradnik J.
    • et al.
    Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5.
    Cell. 2022; 185: 3992-4007 e3916
    • Xia H.
    • Yeung J.
    • Kalveram B.
    • Bills C.J.
    • Chen J.Y.
    • Kurhade C.
    • Zou J.
    • Widen S.G.
    • Mann B.R.
    • Kondor R.
    • et al.
    Cross-neutralization and viral fitness of SARS-CoV-2 Omicron sublineages.
    Emerg. Microbes Infect. 2023; 12e2161422
    • Planas D.
    • Bruel T.
    • Staropoli I.
    • Guivel-Benhassine F.
    • Porrot F.
    • Maes P.
    • Grzelak L.
    • Prot M.
    • Mougari S.
    • Planchais C.
    • et al.
    Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies.
    Nat. Commun. 2023; 14: 824
    • Wang Q.
    • Iketani S.
    • Li Z.
    • Liu L.
    • Guo Y.
    • Huang Y.
    • Bowen A.D.
    • Liu M.
    • Wang M.
    • Yu J.
    • et al.
    Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants.
    Cell. 2023; 186: 279-286 e278
    • Arora P.
    • Kempf A.
    • Nehlmeier I.
    • Schulz S.R.
    • Jack H.M.
    • Pohlmann S.
    • Hoffmann M.
    Omicron sublineage BQ.1.1 resistance to monoclonal antibodies.
    Lancet Infect. Dis. 2023; 23: 22-23
    • Arora P.
    • Cossmann A.
    • Schulz S.R.
    • Ramos G.M.
    • Stankov M.V.
    • Jack H.M.
    • Behrens G.M.N.
    • Pohlmann S.
    • Hoffmann M.
    Neutralisation sensitivity of the SARS-CoV-2 XBB.1 lineage.
    Lancet Infect. Dis. 2023; 23: 147-148
    • Nehlmeier I.
    • Kempf A.
    • Arora P.
    • Cossmann A.
    • Dopfer-Jablonka A.
    • Stankov M.V.
    • Schulz S.R.
    • Jack H.M.
    • Behrens G.M.N.
    • Pohlmann S.
    • Hoffmann M.
    Host cell entry and neutralisation sensitivity of the SARS-CoV-2 XBB.1.16 lineage.
    Cell. Mol. Immunol. 2023; 20: 969-971
    • Qu P.
    • Faraone J.N.
    • Evans J.P.
    • Zheng Y.M.
    • Carlin C.
    • Anghelina M.
    • Stevens P.
    • Fernandez S.
    • Jones D.
    • Panchal A.R.
    • et al.
    Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants.
    Cell Rep. 2023; 42112443
    • Uriu K.
    • Ito J.
    • Kosugi Y.
    • Tanaka Y.L.
    • Mugita Y.
    • Guo Z.
    • Hinay Jr., A.A.
    • Putri O.
    • Kim Y.
    • Shimizu R.
    • et al.
    Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant.
    Lancet Infect. Dis. 2023; 23: e460-e461
    • Yang S.
    • Yu Y.
    • Jian F.
    • Song W.
    • Yisimayi A.
    • Chen X.
    • Xu Y.
    • Wang P.
    • Wang J.
    • Yu L.
    • et al.
    Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86.
    Lancet Infect. Dis. 2023; 23: e457-e459
    • Sheward D.J.
    • Yang Y.
    • Westerberg M.
    • Oling S.
    • Muschiol S.
    • Sato K.
    • Peacock T.P.
    • Karlsson Hedestam G.B.
    • Albert J.
    • Murrell B.
    Sensitivity of the SARS-CoV-2 BA.2.86 variant to prevailing neutralising antibody responses.
    Lancet Infect. Dis. 2023; 23: e462-e463
    • Wang Q.
    • Guo Y.
    • Liu L.
    • Schwanz L.T.
    • Li Z.
    • Nair M.S.
    • Ho J.
    • Zhang R.M.
    • Iketani S.
    • Yu J.
    • et al.
    2.86 spike.
    Antigenicity and receptor affinity of SARS-CoV-2 BA. Nature, 2023
    • Lasrado N.
    • Collier A.Y.
    • Hachmann N.P.
    • Miller J.
    • Rowe M.
    • Schonberg E.D.
    • Rodrigues S.L.
    • LaPiana A.
    • Patio R.C.
    • Anand T.
    • et al.
    Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86.
    Vaccine. 2023; 41: 6904-6909
    • Hu Y.
    • Zou J.
    • Kurhade C.
    • Deng X.
    • Chang H.C.
    • Kim D.K.
    • Shi P.Y.
    • Ren P.
    • Xie X.
    Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1.
    Emerg. Microbes Infect. 2023; 122271089
    • Cai Y.
    • Zhang J.
    • Xiao T.
    • Peng H.
    • Sterling S.M.
    • Walsh Jr, R.M.
    • Rawson S.
    • Rits-Volloch S.
    • Chen B.
    Distinct conformational states of SARS-CoV-2 spike protein..
    Science. 2020; 369: 1586-1592https://doi.org/10.1126/science.abd4251
    • Brinkmann C.
    • Hoffmann M.
    • Lubke A.
    • Nehlmeier I.
    • Kramer-Kuhl A.
    • Winkler M.
    • Pohlmann S.
    The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells.
    PLoS One. 2017; 12e0189073
    • Arora P.
    • Sidarovich A.
    • Kruger N.
    • Kempf A.
    • Nehlmeier I.
    • Graichen L.
    • Moldenhauer A.S.
    • Winkler M.S.
    • Schulz S.
    • Jack H.M.
    • et al.
    B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination.
    Cell Rep. 2021; 37109825
    • Arora P.
    • Zhang L.
    • Rocha C.
    • Sidarovich A.
    • Kempf A.
    • Schulz S.
    • Cossmann A.
    • Manger B.
    • Baier E.
    • Tampe B.
    • et al.
    Comparable neutralisation evasion of SARS-CoV-2 omicron subvariants BA.1, BA.2, and BA.3.
    Lancet Infect. Dis. 2022; 22: 766-767
    • Hoffmann M.
    • Kruger N.
    • Schulz S.
    • Cossmann A.
    • Rocha C.
    • Kempf A.
    • Nehlmeier I.
    • Graichen L.
    • Moldenhauer A.S.
    • Winkler M.S.
    • et al.
    The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic.
    Cell. 2022; 185: 447-456 e411
    • Hoffmann M.
    • Zhang L.
    • Kruger N.
    • Graichen L.
    • Kleine-Weber H.
    • Hofmann-Winkler H.
    • Kempf A.
    • Nessler S.
    • Riggert J.
    • Winkler M.S.
    • et al.
    SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization.
    Cell Rep. 2021; 35109017
    • Arora P.
    • Zhang L.
    • Kruger N.
    • Rocha C.
    • Sidarovich A.
    • Schulz S.
    • Kempf A.
    • Graichen L.
    • Moldenhauer A.S.
    • Cossmann A.
    • et al.
    SARS-CoV-2 Omicron sublineages show comparable cell entry but differential neutralization by therapeutic antibodies.
    Cell Host Microbe. 2022; 30: 1103-1111 e1106
    • Kleine-Weber H.
    • Elzayat M.T.
    • Wang L.
    • Graham B.S.
    • Muller M.A.
    • Drosten C.
    • Pohlmann S.
    • Hoffmann M.
    Mutations in the Spike Protein of Middle East Respiratory Syndrome Coronavirus Transmitted in Korea Increase Resistance to Antibody-Mediated Neutralization.
    J. Virol. 2019; 93
    • Berger Rentsch M.
    • Zimmer G.
    A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon.
    PLoS One. 2011; 6e25858
    • Corman V.M.
    • Landt O.
    • Kaiser M.
    • Molenkamp R.
    • Meijer A.
    • Chu D.K.
    • Bleicker T.
    • Brunink S.
    • Schneider J.
    • Schmidt M.L.
    • et al.
    Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR.
    https://www.cell.com/action/showPdf?pii=S0092-8674%2823%2901399-5
    Euro. Surveill. 2020; 25 (ES.2020.25.3.2000045)
    • Niemeyer D.
    • Stenzel S.
    • Veith T.
    • Schroeder S.
    • Friedmann K.
    • Weege F.
    • Trimpert J.
    • Heinze J.
    • Richter A.
    • Jansen J.
    • et al.
    SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression.
    PLoS Biol. 2022; 20e3001871

 En otro estudio, investigadores de Alemania y Francia llegaron a la misma conclusión. "BA.2.86 ha recuperado un rasgo característico de los primeros linajes del SARS-CoV-2: la entrada robusta a las células pulmonares".

"En un estudio, investigadores de la Universidad Estatal de Ohio descubrieron que BA.2.86 puede fusionarse con células humanas de manera más eficiente e infectar las células que recubren la parte inferior del pulmón, rasgos que pueden hacerlo más similar a Delta"

 "Omicron tenía predilección por infectar las vías respiratorias superiores frente a las inferiores. Los nuevos estudios ofrecen pruebas de que esta tendencia bien podría estar invirtiéndose. De ser cierto, son malas noticias para quienes esperaban que el virus se atenuara".

 "Otra de sus preocupaciones: la posibilidad de que el COVID se recombine con otro coronavirus en animales y luego vuelva a pasar a los humanos, lo que arrojaría otro giro viral en la narrativa de la pandemia".

----------

"A los australianos se les dice que "se queden en casa" mientras se propagan dos nuevas variantes de Covid y aumentan las hospitalizaciones. Dos nuevas variantes de Covid se propagan en Australia JN.1 y HV.1"

https://www.dailymail.co.uk/news/article-12942991/Covid-Australians-told-stay-home-two-new-variants.html 

Síntomas de JN.1 Pirola, la nueva variante de Covid-19: cómo detectarlos y qué hacer ante su expansión

La OMS informa que la JN.1 es una de las principales responsables de la actual escalada de contagios por Covid-19 y alerta de su alta capacidad transmisora

 Un ordenador revela que la Covid mutó por el comportamiento humano

Los hospitales y centros de salud españoles están asistiendo a un aumento de las infecciones respiratorias, y la aparición de una nueva cepa de Covid-19 que presenta síntomas variables, la llamada JN.1 'Pirola', no ayuda. Según datos del Ministerio de Sanidad, los casos de SARS-CoV-2 han aumentado un 14%, mientras que los de gripe han suido un 20% con respecto a la semana anterior.

No solo en España, en Estados Unidos la variante JN.1 de la Pirola está afectando significativamente a este territorio, donde se ha convertido rápidamente en la variante más dominante del país. En particular, JN.1 ha superado en prevalencia a otras subvariantes, incluidas HV.1 y EG.5. En diciembre, JN.1 representaba más del 44% de los casos de Covid-19 en Estados Unidos.

Pese a que en España faltan mediciones precisas, debemos tener en cuenta que la variante JN.1 Pirola ya ha llegado a los hospitales y parece estar ocasionando cierta presión en la infraestructura sanitaria, unida al aumento del virus sincitial o la gripe. Sobre ella, debemos saber que la JN.1 ha sido registrada ya como "variante de interés" por la Organización Mundial de la Salud (OMS), una incorporación reciente a la lista de subvariantes de Covid.

 


No hay comentarios: